Computer Vision Enabled Building Digital Twin Using Building Information Model

对象(语法) 计算机科学 方案(数学) 计算机视觉 匹配(统计) 人工智能 维数(图论) 校准 视觉对象识别的认知神经科学 数学 数学分析 统计 纯数学
作者
Xiaoping Zhou,Kaiyue Sun,Jia Wang,Jichao Zhao,Chi-Yuan Feng,Yalong Yang,Wei Zhou
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2684-2692 被引量:43
标识
DOI:10.1109/tii.2022.3190366
摘要

A building digital twin (BDT) can maintain an up-to-date digital model reflecting physical world conditions and has become necessary for building applications. Recent studies on the BDT employed the Internet of Things to sense physical-world conditions. Although cameras are one of the most widely used facilities in buildings, their adoption in the BDT remains unexplored. This study proposes a novel computer-vision (CV)-enabled BDT scheme using building information modeling (BIM) taking camera videos as input, which addresses the dimension, coordinate system, and object inconsistencies between BIM and camera videos. First, the proposed BDT scheme detects objects’ locations and rotations jointly using a 2-D object detection network and a 3-D object estimation network. Then, theorem and lemmas are presented to compute the 3-D locations in BCS using detected 2-D locations. Thirdly, both cold-start object matching and run-time object matching schemes are proposed to address the object inconsistency between camera videos and BIM. Finally, experiments were conducted in the real-world environment. The experiment results showed that the proposed BDT scheme maintained average location errors of 0.181 m with distortions preserved and 0.165 m with distortions removed in the manual calibration scenario, 0.166 m with distortions preserved, and 0.195 m with distortions removed in automatic calibration scenario. This finding proved the effectiveness of the proposed BDT scheme. This study is the first to explore a BDT scheme on top of BIM using CV. It is anticipated that this study will inspire more intelligent studies in smart buildings jointly employing both CV and BIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ava应助learning小童鞋采纳,获得30
3秒前
william完成签到,获得积分10
3秒前
HU完成签到 ,获得积分10
4秒前
5秒前
5秒前
王哪跑12发布了新的文献求助10
5秒前
FashionBoy应助L_采纳,获得10
6秒前
葛运年完成签到,获得积分10
6秒前
6秒前
葛运年发布了新的文献求助10
8秒前
8秒前
8秒前
潇洒十三应助小毛毛采纳,获得10
8秒前
10秒前
orixero应助明亮若枫采纳,获得10
10秒前
11秒前
星辰大海应助灰尘精灵c采纳,获得30
11秒前
风中的电脑完成签到,获得积分10
12秒前
lili发布了新的文献求助10
12秒前
13秒前
大胆班发布了新的文献求助30
13秒前
13秒前
14秒前
15秒前
wanci应助GUGU采纳,获得10
16秒前
王豆豆发布了新的文献求助10
16秒前
16秒前
非文完成签到,获得积分20
17秒前
18秒前
18秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
斯文忆梅应助科研通管家采纳,获得10
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
19秒前
科目三应助王三采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462236
求助须知:如何正确求助?哪些是违规求助? 3055862
关于积分的说明 9049551
捐赠科研通 2745410
什么是DOI,文献DOI怎么找? 1506290
科研通“疑难数据库(出版商)”最低求助积分说明 696047
邀请新用户注册赠送积分活动 695606