Data Protection in Palmprint Recognition via Dynamic Random Invisible Watermark Embedding

水印 人工智能 计算机科学 数字水印 计算机视觉 生物识别 模式识别(心理学) 嵌入 图像(数学) 随机性 数学 统计
作者
Chengcheng Liu,Dexing Zhong,Huikai Shao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 6927-6940 被引量:11
标识
DOI:10.1109/tcsvt.2022.3174582
摘要

Palmprint recognition is one of the most popular biometric technologies. Recent researches mainly focus on the recognition performance, while pay less attention to the data protection issues. In this paper, we propose an active biometric data protection model for securing palmprint images in transmission or storage scenarios, called Dynamic Random Invisible Watermark Embedding (DRIWE) model. The DRIWE model implicitly embeds a watermark in each original palmprint ROI image, and then separates the embedded watermark from the watermarked image before identification. If the separated watermark is consistent with the original watermark, it indicates that the image is trustworthy and can be used in the subsequent recognition process. Otherwise, it proves that the image has been illegally tampered with. Furthermore, a two-dimensional image information entropy loss is proposed to enhance the generalization of the model to different watermarks. It ensures that the model can always assign enough information to the host image (i.e., original palmprint image) when different watermarks are applied. Thus, it enables the separator to extract the complete watermark from the watermarked image. This greatly enhances the dynamics and randomness of the watermark embedding process and further improves the ability to secure the data. Adequate experiments are conducted on two benchmark palmprint databases. The results show that the proposed DRIWE model has satisfactory attack resistance and strong generalization ability: even if only one watermark is used in training stage, it can be generalized to a dozen of other new watermark images in the testing stage. In addition, the optimal accuracy of the watermarked data is only reduced by 0.07% compared with the original data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dreamland发布了新的文献求助10
刚刚
今后应助JUGG采纳,获得10
刚刚
123完成签到,获得积分10
1秒前
拼搏城应助醒醒采纳,获得10
1秒前
lshl2000完成签到,获得积分10
1秒前
4秒前
小巧的海瑶完成签到,获得积分10
4秒前
清脆的萍发布了新的文献求助10
7秒前
小小的梦想完成签到,获得积分10
8秒前
Gzl完成签到 ,获得积分10
8秒前
zho关闭了zho文献求助
8秒前
timo发布了新的文献求助10
9秒前
9秒前
诚心的焱完成签到,获得积分10
10秒前
周必铙完成签到,获得积分10
10秒前
123发布了新的文献求助30
11秒前
wongshanshan完成签到,获得积分10
11秒前
科研通AI2S应助Wan采纳,获得10
11秒前
小幸运完成签到,获得积分10
13秒前
姜呱呱呱发布了新的文献求助10
14秒前
叁金完成签到,获得积分10
16秒前
Sk发布了新的文献求助10
16秒前
18秒前
gao完成签到,获得积分10
19秒前
19秒前
20秒前
彦希完成签到 ,获得积分10
20秒前
搜集达人应助水穷云起采纳,获得10
21秒前
朕爱圣女果完成签到,获得积分10
24秒前
咳欧克发布了新的文献求助10
24秒前
真实的麦片应助小晋采纳,获得20
24秒前
墨殇完成签到 ,获得积分10
25秒前
充电宝应助allrubbish采纳,获得10
25秒前
雄i完成签到,获得积分10
29秒前
SciGPT应助从容书瑶采纳,获得10
29秒前
万能图书馆应助Sk采纳,获得10
29秒前
29秒前
咳欧克完成签到,获得积分20
30秒前
叁壹粑粑完成签到,获得积分10
31秒前
小蘑菇应助姜呱呱呱采纳,获得10
31秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388