亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Protection in Palmprint Recognition via Dynamic Random Invisible Watermark Embedding

水印 人工智能 计算机科学 数字水印 计算机视觉 生物识别 模式识别(心理学) 嵌入 图像(数学) 随机性 数学 统计
作者
Chengcheng Liu,Dexing Zhong,Huikai Shao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 6927-6940 被引量:11
标识
DOI:10.1109/tcsvt.2022.3174582
摘要

Palmprint recognition is one of the most popular biometric technologies. Recent researches mainly focus on the recognition performance, while pay less attention to the data protection issues. In this paper, we propose an active biometric data protection model for securing palmprint images in transmission or storage scenarios, called Dynamic Random Invisible Watermark Embedding (DRIWE) model. The DRIWE model implicitly embeds a watermark in each original palmprint ROI image, and then separates the embedded watermark from the watermarked image before identification. If the separated watermark is consistent with the original watermark, it indicates that the image is trustworthy and can be used in the subsequent recognition process. Otherwise, it proves that the image has been illegally tampered with. Furthermore, a two-dimensional image information entropy loss is proposed to enhance the generalization of the model to different watermarks. It ensures that the model can always assign enough information to the host image (i.e., original palmprint image) when different watermarks are applied. Thus, it enables the separator to extract the complete watermark from the watermarked image. This greatly enhances the dynamics and randomness of the watermark embedding process and further improves the ability to secure the data. Adequate experiments are conducted on two benchmark palmprint databases. The results show that the proposed DRIWE model has satisfactory attack resistance and strong generalization ability: even if only one watermark is used in training stage, it can be generalized to a dozen of other new watermark images in the testing stage. In addition, the optimal accuracy of the watermarked data is only reduced by 0.07% compared with the original data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kss完成签到 ,获得积分10
8秒前
25秒前
可靠诗筠完成签到 ,获得积分10
28秒前
32秒前
wanci应助懒得可爱采纳,获得10
42秒前
青柠完成签到 ,获得积分10
48秒前
52秒前
牛八先生完成签到,获得积分10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
懒得可爱发布了新的文献求助10
1分钟前
科研通AI5应助Marciu33采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
dew发布了新的文献求助10
1分钟前
2分钟前
搜集达人应助dew采纳,获得10
2分钟前
2分钟前
情怀应助刘刘采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
刘刘发布了新的文献求助10
2分钟前
2分钟前
Sakura发布了新的文献求助10
2分钟前
2分钟前
求助的小鸟给默默惋清的求助进行了留言
2分钟前
积极便当发布了新的文献求助10
2分钟前
李健应助Sakura采纳,获得10
2分钟前
yiyixt完成签到 ,获得积分10
2分钟前
田様应助积极便当采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091352
求助须知:如何正确求助?哪些是违规求助? 4305767
关于积分的说明 13416029
捐赠科研通 4131418
什么是DOI,文献DOI怎么找? 2263095
邀请新用户注册赠送积分活动 1266951
关于科研通互助平台的介绍 1202018