Data Protection in Palmprint Recognition via Dynamic Random Invisible Watermark Embedding

水印 人工智能 计算机科学 数字水印 计算机视觉 生物识别 模式识别(心理学) 嵌入 图像(数学) 随机性 数学 统计
作者
Chengcheng Liu,Dexing Zhong,Huikai Shao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 6927-6940 被引量:11
标识
DOI:10.1109/tcsvt.2022.3174582
摘要

Palmprint recognition is one of the most popular biometric technologies. Recent researches mainly focus on the recognition performance, while pay less attention to the data protection issues. In this paper, we propose an active biometric data protection model for securing palmprint images in transmission or storage scenarios, called Dynamic Random Invisible Watermark Embedding (DRIWE) model. The DRIWE model implicitly embeds a watermark in each original palmprint ROI image, and then separates the embedded watermark from the watermarked image before identification. If the separated watermark is consistent with the original watermark, it indicates that the image is trustworthy and can be used in the subsequent recognition process. Otherwise, it proves that the image has been illegally tampered with. Furthermore, a two-dimensional image information entropy loss is proposed to enhance the generalization of the model to different watermarks. It ensures that the model can always assign enough information to the host image (i.e., original palmprint image) when different watermarks are applied. Thus, it enables the separator to extract the complete watermark from the watermarked image. This greatly enhances the dynamics and randomness of the watermark embedding process and further improves the ability to secure the data. Adequate experiments are conducted on two benchmark palmprint databases. The results show that the proposed DRIWE model has satisfactory attack resistance and strong generalization ability: even if only one watermark is used in training stage, it can be generalized to a dozen of other new watermark images in the testing stage. In addition, the optimal accuracy of the watermarked data is only reduced by 0.07% compared with the original data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小宁发布了新的文献求助10
2秒前
爱你哦发布了新的文献求助10
2秒前
2秒前
3秒前
酷波er应助彩色的若颜采纳,获得10
3秒前
wb完成签到 ,获得积分10
4秒前
4秒前
丘比特应助Meteor采纳,获得10
4秒前
0406完成签到,获得积分10
4秒前
Yeah完成签到,获得积分10
6秒前
无花果应助郭倩采纳,获得10
6秒前
Hello应助璀璨采纳,获得10
6秒前
6秒前
思源应助李小宁采纳,获得10
7秒前
FKVB_完成签到 ,获得积分10
8秒前
清新的马里奥完成签到 ,获得积分10
9秒前
ZXD1989驳回了wlscj应助
9秒前
10秒前
Zxtzzzzz发布了新的文献求助10
11秒前
情怀应助lsc采纳,获得10
11秒前
重要的安寒完成签到,获得积分20
11秒前
12秒前
13秒前
Try完成签到,获得积分10
15秒前
15秒前
科研通AI6应助重要的安寒采纳,获得30
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
烟花应助meng采纳,获得10
18秒前
xalone发布了新的文献求助10
18秒前
18秒前
22完成签到,获得积分10
19秒前
19秒前
蒲公英发布了新的文献求助10
19秒前
Ghy完成签到,获得积分10
19秒前
浮游应助芷兰丁香采纳,获得10
20秒前
浮游应助wjy321采纳,获得10
21秒前
21秒前
璀璨完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480303
求助须知:如何正确求助?哪些是违规求助? 4581518
关于积分的说明 14380905
捐赠科研通 4510074
什么是DOI,文献DOI怎么找? 2471649
邀请新用户注册赠送积分活动 1458040
关于科研通互助平台的介绍 1431812