重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Data Protection in Palmprint Recognition via Dynamic Random Invisible Watermark Embedding

水印 人工智能 计算机科学 数字水印 计算机视觉 生物识别 模式识别(心理学) 嵌入 图像(数学) 随机性 数学 统计
作者
Chengcheng Liu,Dexing Zhong,Huikai Shao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 6927-6940 被引量:11
标识
DOI:10.1109/tcsvt.2022.3174582
摘要

Palmprint recognition is one of the most popular biometric technologies. Recent researches mainly focus on the recognition performance, while pay less attention to the data protection issues. In this paper, we propose an active biometric data protection model for securing palmprint images in transmission or storage scenarios, called Dynamic Random Invisible Watermark Embedding (DRIWE) model. The DRIWE model implicitly embeds a watermark in each original palmprint ROI image, and then separates the embedded watermark from the watermarked image before identification. If the separated watermark is consistent with the original watermark, it indicates that the image is trustworthy and can be used in the subsequent recognition process. Otherwise, it proves that the image has been illegally tampered with. Furthermore, a two-dimensional image information entropy loss is proposed to enhance the generalization of the model to different watermarks. It ensures that the model can always assign enough information to the host image (i.e., original palmprint image) when different watermarks are applied. Thus, it enables the separator to extract the complete watermark from the watermarked image. This greatly enhances the dynamics and randomness of the watermark embedding process and further improves the ability to secure the data. Adequate experiments are conducted on two benchmark palmprint databases. The results show that the proposed DRIWE model has satisfactory attack resistance and strong generalization ability: even if only one watermark is used in training stage, it can be generalized to a dozen of other new watermark images in the testing stage. In addition, the optimal accuracy of the watermarked data is only reduced by 0.07% compared with the original data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助LSY采纳,获得10
1秒前
紫色翡翠完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
liu发布了新的文献求助10
5秒前
姜jiang发布了新的文献求助10
7秒前
哦哦发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
浮游应助顺其自然_666888采纳,获得10
9秒前
皮肤科王东明完成签到,获得积分10
9秒前
9秒前
10秒前
我是老大应助Huguizhou采纳,获得10
12秒前
12秒前
汉堡包应助dsa采纳,获得10
13秒前
蒸馒头争气完成签到,获得积分10
14秒前
14秒前
牧星发布了新的文献求助10
15秒前
哦哦完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
小小莫发布了新的文献求助10
17秒前
浮游应助姜jiang采纳,获得10
17秒前
17秒前
虚心的大树完成签到 ,获得积分10
17秒前
123完成签到,获得积分10
19秒前
能干智宸发布了新的文献求助10
19秒前
爆米花应助huma采纳,获得10
20秒前
满意的甜瓜完成签到 ,获得积分10
21秒前
勤劳的小何完成签到 ,获得积分20
21秒前
22秒前
22秒前
zerovb3发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
屈绮兰发布了新的文献求助100
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707