Explicit Message-Passing Heterogeneous Graph Neural Network

计算机科学 理论计算机科学 异构网络 消息传递 同种类的 嵌入 图形 语义学(计算机科学) 人工神经网络 人工智能 数学 分布式计算 组合数学 电信 无线网络 无线 程序设计语言
作者
Lei Xu,Zhenyu He,Kai Wang,Chang-Dong Wang,Shuqiang Huang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/tkde.2022.3185128
摘要

Graph neural network (GNN) has shown its prominent performance in representation learning of graphs but it has not been fully considered for heterogeneous graphs which contain more complex structures and rich semantics. The rich semantic information of heterogeneous graph can be usually revealed by meta-paths. Therefore, most of the existing GNN models designed for heterogeneous graphs utilize the meta-path based neighborhood sampler to divide a heterogeneous graph into multiple homogeneous subgraphs according to various meta-paths so that the homogeneous GNN can be applied to investigate heterogeneous graphs. Nevertheless, the way of embedding semantic information of meta-paths into multiple homogeneous graphs is implicit and ineffective, which cannot accurately capture the semantics of heterogeneous graphs. In this paper, we propose a novel semi-supervised GNN model named Explicit Message-Passing Heterogeneous Graph Neural Network (EMP), which executes the process of explicit message-passing along the meta-paths. Besides, we also propose a split method for meta-paths and consider mutual effect between various meta-paths in advance in the proposed model, so that the semantic information of the whole set of meta-paths can be captured accurately. Extensive experiments conducted on three real-world datasets demonstrate the superiority of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI发布了新的文献求助10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
马静雨完成签到,获得积分20
2秒前
3秒前
3秒前
快乐小白菜应助shenzhou9采纳,获得10
3秒前
无花果应助aertom采纳,获得10
3秒前
小田发布了新的文献求助10
3秒前
sankumao发布了新的文献求助30
3秒前
奋斗的盼柳完成签到 ,获得积分10
4秒前
5秒前
Jasper应助handsomecat采纳,获得10
5秒前
5秒前
李雪完成签到,获得积分10
6秒前
6秒前
sv发布了新的文献求助10
8秒前
小田完成签到,获得积分10
8秒前
茶茶完成签到,获得积分20
8秒前
苏兴龙完成签到,获得积分10
8秒前
坚强的亦云-333完成签到,获得积分10
8秒前
Ava应助dan1029采纳,获得10
9秒前
9秒前
9秒前
奶糖最可爱完成签到,获得积分10
10秒前
10秒前
mojomars发布了新的文献求助10
11秒前
幽壑之潜蛟应助茶茶采纳,获得10
11秒前
12秒前
12秒前
12秒前
迅速海云完成签到,获得积分10
12秒前
sjxx发布了新的文献求助10
12秒前
12秒前
乐乐应助Rachel采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794