亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards an orthogonality constraint-based feature partitioning approach to classify veracity and identify stance overlapping of rumors on twitter

正交性 计算机科学 约束(计算机辅助设计) 特征(语言学) 人工智能 数据挖掘 机器学习 模式识别(心理学) 情报检索 数学 几何学 语言学 哲学
作者
Saswata Roy,Manish Bhanu,Sourav Kumar Dandapat,Joydeep Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:208: 118175-118175
标识
DOI:10.1016/j.eswa.2022.118175
摘要

The consequences of fake news and rumors have adversely affected social and political stability worldwide. Many such incidents have been reported, which resulted in mass chaos with the loss of lives and property. In response, many researchers have developed models for the veracity detection of rumors on social media. The recent advances in veracity detection models incorporate the use of Deep Neural Networks (DNN) over statistical and traditional machine learning based models. Current veracity detection approaches leverage powerful DNN models such as Transformer, Adversarial Networks, Graph Convolutional Networks (GCN), Variational Autoencoder (VAE) etc., along with exploiting the intuition of Multi-task learning (MTL) approach. In addition, most of these aforesaid well-known models rely on auxiliary (additional) information to a good extent. Presently, these recent models’ dependence on (1) auxiliary information and multiple tasks restrain productivity and incur cost on resources. Moreover, (2) the structural constraints of these models put a limiting effect on model deliverance. These two shortcomings of the recent models result in poor resource utilization and unstructured feature organization of the objective task, resulting in a compromised output of the model. In this paper, we present an efficient Segregated Non-overlapping and Collectively exhaustive DNN model (SeNoCe) which mitigates the effects of poor utilization of resources and enhances the model performance without the aid of auxiliary information or tasks which incur good manual efforts and costs. SeNoCe is capable of utilizing the fine-granularity of implicit features as attention for task identification. SeNoCe reports a major performance improvement over the state-of-the-art techniques on standard benchmark metrics across two real-world rumor datasets. It records a minimum of 24.06−12.8%, 53.1−49.2% improvement in terms of Macro F and Accuracy, respectively over the best performing state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助渡己。采纳,获得10
19秒前
23秒前
31秒前
渡己。发布了新的文献求助10
37秒前
剑逍遥完成签到 ,获得积分10
1分钟前
1分钟前
零一发布了新的文献求助10
1分钟前
Sience发布了新的文献求助10
1分钟前
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
热情紫丝发布了新的文献求助10
1分钟前
零一完成签到 ,获得积分10
1分钟前
热情紫丝完成签到,获得积分10
1分钟前
Ava应助爱听歌的闵采纳,获得10
1分钟前
2分钟前
爆米花应助孙地图采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
孙地图发布了新的文献求助10
2分钟前
爱听歌的闵完成签到,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
5分钟前
5分钟前
哈哈哈发布了新的文献求助10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
5分钟前
积极的尔白完成签到 ,获得积分10
5分钟前
6分钟前
dada完成签到 ,获得积分10
6分钟前
共享精神应助Jenny采纳,获得10
6分钟前
xuan发布了新的文献求助20
7分钟前
李昕123完成签到 ,获得积分10
7分钟前
さくま完成签到,获得积分10
7分钟前
Thh发布了新的文献求助10
8分钟前
CC完成签到,获得积分10
8分钟前
迅速的蜡烛完成签到 ,获得积分10
8分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261526
求助须知:如何正确求助?哪些是违规求助? 2902348
关于积分的说明 8319619
捐赠科研通 2572232
什么是DOI,文献DOI怎么找? 1397469
科研通“疑难数据库(出版商)”最低求助积分说明 653746
邀请新用户注册赠送积分活动 632240