亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards an orthogonality constraint-based feature partitioning approach to classify veracity and identify stance overlapping of rumors on twitter

正交性 计算机科学 约束(计算机辅助设计) 特征(语言学) 人工智能 数据挖掘 机器学习 模式识别(心理学) 情报检索 数学 几何学 语言学 哲学
作者
Saswata Roy,Manish Bhanu,Sourav Kumar Dandapat,Joydeep Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:208: 118175-118175
标识
DOI:10.1016/j.eswa.2022.118175
摘要

The consequences of fake news and rumors have adversely affected social and political stability worldwide. Many such incidents have been reported, which resulted in mass chaos with the loss of lives and property. In response, many researchers have developed models for the veracity detection of rumors on social media. The recent advances in veracity detection models incorporate the use of Deep Neural Networks (DNN) over statistical and traditional machine learning based models. Current veracity detection approaches leverage powerful DNN models such as Transformer, Adversarial Networks, Graph Convolutional Networks (GCN), Variational Autoencoder (VAE) etc., along with exploiting the intuition of Multi-task learning (MTL) approach. In addition, most of these aforesaid well-known models rely on auxiliary (additional) information to a good extent. Presently, these recent models’ dependence on (1) auxiliary information and multiple tasks restrain productivity and incur cost on resources. Moreover, (2) the structural constraints of these models put a limiting effect on model deliverance. These two shortcomings of the recent models result in poor resource utilization and unstructured feature organization of the objective task, resulting in a compromised output of the model. In this paper, we present an efficient Segregated Non-overlapping and Collectively exhaustive DNN model (SeNoCe) which mitigates the effects of poor utilization of resources and enhances the model performance without the aid of auxiliary information or tasks which incur good manual efforts and costs. SeNoCe is capable of utilizing the fine-granularity of implicit features as attention for task identification. SeNoCe reports a major performance improvement over the state-of-the-art techniques on standard benchmark metrics across two real-world rumor datasets. It records a minimum of 24.06−12.8%, 53.1−49.2% improvement in terms of Macro F and Accuracy, respectively over the best performing state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXneuro完成签到,获得积分10
9秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
酷酷问夏完成签到 ,获得积分10
20秒前
hb发布了新的文献求助10
23秒前
撒旦asd发布了新的文献求助10
30秒前
科研通AI6.1应助LucyMartinez采纳,获得20
33秒前
爆米花应助读书的时候采纳,获得10
40秒前
52秒前
1分钟前
Ava应助读书的时候采纳,获得10
1分钟前
aaa完成签到,获得积分10
1分钟前
撒旦asd发布了新的文献求助10
1分钟前
科研通AI6.1应助hb采纳,获得10
1分钟前
1分钟前
六爻发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助撒旦asd采纳,获得10
1分钟前
1分钟前
Lucas应助读书的时候采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得100
2分钟前
充电宝应助科研通管家采纳,获得30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
bkagyin应助zdseu采纳,获得10
2分钟前
2分钟前
Hello应助读书的时候采纳,获得10
2分钟前
zdseu发布了新的文献求助10
2分钟前
小红发布了新的文献求助10
3分钟前
3分钟前
每天都要开心完成签到 ,获得积分10
3分钟前
sdshi完成签到,获得积分10
3分钟前
3分钟前
阿星完成签到,获得积分10
3分钟前
3分钟前
阿星发布了新的文献求助10
3分钟前
sdshi发布了新的文献求助10
3分钟前
Tania完成签到,获得积分10
3分钟前
科研通AI6.1应助老杨采纳,获得30
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739702
求助须知:如何正确求助?哪些是违规求助? 5388560
关于积分的说明 15339909
捐赠科研通 4882093
什么是DOI,文献DOI怎么找? 2624126
邀请新用户注册赠送积分活动 1572850
关于科研通互助平台的介绍 1529667