Towards an orthogonality constraint-based feature partitioning approach to classify veracity and identify stance overlapping of rumors on twitter

正交性 计算机科学 约束(计算机辅助设计) 特征(语言学) 人工智能 数据挖掘 机器学习 模式识别(心理学) 情报检索 数学 几何学 语言学 哲学
作者
Saswata Roy,Manish Bhanu,Sourav Kumar Dandapat,Joydeep Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:208: 118175-118175
标识
DOI:10.1016/j.eswa.2022.118175
摘要

The consequences of fake news and rumors have adversely affected social and political stability worldwide. Many such incidents have been reported, which resulted in mass chaos with the loss of lives and property. In response, many researchers have developed models for the veracity detection of rumors on social media. The recent advances in veracity detection models incorporate the use of Deep Neural Networks (DNN) over statistical and traditional machine learning based models. Current veracity detection approaches leverage powerful DNN models such as Transformer, Adversarial Networks, Graph Convolutional Networks (GCN), Variational Autoencoder (VAE) etc., along with exploiting the intuition of Multi-task learning (MTL) approach. In addition, most of these aforesaid well-known models rely on auxiliary (additional) information to a good extent. Presently, these recent models’ dependence on (1) auxiliary information and multiple tasks restrain productivity and incur cost on resources. Moreover, (2) the structural constraints of these models put a limiting effect on model deliverance. These two shortcomings of the recent models result in poor resource utilization and unstructured feature organization of the objective task, resulting in a compromised output of the model. In this paper, we present an efficient Segregated Non-overlapping and Collectively exhaustive DNN model (SeNoCe) which mitigates the effects of poor utilization of resources and enhances the model performance without the aid of auxiliary information or tasks which incur good manual efforts and costs. SeNoCe is capable of utilizing the fine-granularity of implicit features as attention for task identification. SeNoCe reports a major performance improvement over the state-of-the-art techniques on standard benchmark metrics across two real-world rumor datasets. It records a minimum of 24.06−12.8%, 53.1−49.2% improvement in terms of Macro F and Accuracy, respectively over the best performing state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysh发布了新的文献求助30
1秒前
怀民完成签到 ,获得积分10
2秒前
小瓶子发布了新的文献求助10
2秒前
大模型应助第七个星球采纳,获得10
2秒前
2秒前
殷勤的帽子关注了科研通微信公众号
3秒前
小猪完成签到 ,获得积分10
3秒前
热情蓝发布了新的文献求助10
4秒前
TTOM发布了新的文献求助10
4秒前
4秒前
YCY完成签到,获得积分10
5秒前
6秒前
慕慕完成签到 ,获得积分10
7秒前
7秒前
ysh完成签到,获得积分10
8秒前
ztt发布了新的文献求助10
9秒前
超级无敌好吃完成签到,获得积分10
9秒前
wzc发布了新的文献求助10
9秒前
3129386658发布了新的文献求助10
9秒前
我吃柠檬发布了新的文献求助10
9秒前
Tancl1235完成签到,获得积分10
9秒前
粥粥发布了新的文献求助10
10秒前
11秒前
薛武发布了新的文献求助10
12秒前
岁岁菌完成签到,获得积分10
13秒前
松子发布了新的文献求助10
13秒前
14秒前
英俊的铭应助有梦想的人采纳,获得10
15秒前
15秒前
15秒前
17秒前
热情蓝完成签到,获得积分20
17秒前
Zayro完成签到,获得积分10
18秒前
科研通AI6应助羊羊羊采纳,获得10
18秒前
19秒前
Lucas应助cordon采纳,获得10
20秒前
20秒前
simdows完成签到,获得积分10
20秒前
21秒前
Ava应助TTOM采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396