Towards an orthogonality constraint-based feature partitioning approach to classify veracity and identify stance overlapping of rumors on twitter

正交性 计算机科学 约束(计算机辅助设计) 特征(语言学) 人工智能 数据挖掘 机器学习 模式识别(心理学) 情报检索 数学 几何学 语言学 哲学
作者
Saswata Roy,Manish Bhanu,Sourav Kumar Dandapat,Joydeep Chandra
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:208: 118175-118175
标识
DOI:10.1016/j.eswa.2022.118175
摘要

The consequences of fake news and rumors have adversely affected social and political stability worldwide. Many such incidents have been reported, which resulted in mass chaos with the loss of lives and property. In response, many researchers have developed models for the veracity detection of rumors on social media. The recent advances in veracity detection models incorporate the use of Deep Neural Networks (DNN) over statistical and traditional machine learning based models. Current veracity detection approaches leverage powerful DNN models such as Transformer, Adversarial Networks, Graph Convolutional Networks (GCN), Variational Autoencoder (VAE) etc., along with exploiting the intuition of Multi-task learning (MTL) approach. In addition, most of these aforesaid well-known models rely on auxiliary (additional) information to a good extent. Presently, these recent models’ dependence on (1) auxiliary information and multiple tasks restrain productivity and incur cost on resources. Moreover, (2) the structural constraints of these models put a limiting effect on model deliverance. These two shortcomings of the recent models result in poor resource utilization and unstructured feature organization of the objective task, resulting in a compromised output of the model. In this paper, we present an efficient Segregated Non-overlapping and Collectively exhaustive DNN model (SeNoCe) which mitigates the effects of poor utilization of resources and enhances the model performance without the aid of auxiliary information or tasks which incur good manual efforts and costs. SeNoCe is capable of utilizing the fine-granularity of implicit features as attention for task identification. SeNoCe reports a major performance improvement over the state-of-the-art techniques on standard benchmark metrics across two real-world rumor datasets. It records a minimum of 24.06−12.8%, 53.1−49.2% improvement in terms of Macro F and Accuracy, respectively over the best performing state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老王发布了新的文献求助10
1秒前
1秒前
打打应助小石榴采纳,获得10
1秒前
田様应助paov45采纳,获得10
1秒前
4秒前
啸傲发布了新的文献求助10
4秒前
Owen应助YaoQi采纳,获得10
5秒前
田様应助曾经的慕灵采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
nsi发布了新的文献求助10
6秒前
无情洋葱应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
giggle应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
汉堡包应助卜凡采纳,获得10
8秒前
8秒前
搜集达人应助蓝色天空采纳,获得10
8秒前
万能图书馆应助云宝采纳,获得10
9秒前
苏苏发布了新的文献求助10
9秒前
10秒前
11秒前
喃喃发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050832
求助须知:如何正确求助?哪些是违规求助? 4278450
关于积分的说明 13336402
捐赠科研通 4093504
什么是DOI,文献DOI怎么找? 2240349
邀请新用户注册赠送积分活动 1246978
关于科研通互助平台的介绍 1175929