Towards an orthogonality constraint-based feature partitioning approach to classify veracity and identify stance overlapping of rumors on twitter

正交性 计算机科学 约束(计算机辅助设计) 特征(语言学) 人工智能 数据挖掘 机器学习 模式识别(心理学) 情报检索 数学 几何学 语言学 哲学
作者
Saswata Roy,Manish Bhanu,Sourav Kumar Dandapat,Joydeep Chandra
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:208: 118175-118175
标识
DOI:10.1016/j.eswa.2022.118175
摘要

The consequences of fake news and rumors have adversely affected social and political stability worldwide. Many such incidents have been reported, which resulted in mass chaos with the loss of lives and property. In response, many researchers have developed models for the veracity detection of rumors on social media. The recent advances in veracity detection models incorporate the use of Deep Neural Networks (DNN) over statistical and traditional machine learning based models. Current veracity detection approaches leverage powerful DNN models such as Transformer, Adversarial Networks, Graph Convolutional Networks (GCN), Variational Autoencoder (VAE) etc., along with exploiting the intuition of Multi-task learning (MTL) approach. In addition, most of these aforesaid well-known models rely on auxiliary (additional) information to a good extent. Presently, these recent models’ dependence on (1) auxiliary information and multiple tasks restrain productivity and incur cost on resources. Moreover, (2) the structural constraints of these models put a limiting effect on model deliverance. These two shortcomings of the recent models result in poor resource utilization and unstructured feature organization of the objective task, resulting in a compromised output of the model. In this paper, we present an efficient Segregated Non-overlapping and Collectively exhaustive DNN model (SeNoCe) which mitigates the effects of poor utilization of resources and enhances the model performance without the aid of auxiliary information or tasks which incur good manual efforts and costs. SeNoCe is capable of utilizing the fine-granularity of implicit features as attention for task identification. SeNoCe reports a major performance improvement over the state-of-the-art techniques on standard benchmark metrics across two real-world rumor datasets. It records a minimum of 24.06−12.8%, 53.1−49.2% improvement in terms of Macro F and Accuracy, respectively over the best performing state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缥缈橘子发布了新的文献求助10
刚刚
阳光谷完成签到,获得积分10
刚刚
美好的冰蓝完成签到 ,获得积分10
1秒前
lixiaorui发布了新的文献求助10
2秒前
科研通AI6应助江楠采纳,获得10
3秒前
酷波er应助雨雨爱薯条采纳,获得10
3秒前
852应助qq采纳,获得10
3秒前
4秒前
阳光谷发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
机灵千萍完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
领导范儿应助XL神放采纳,获得10
7秒前
minmin发布了新的文献求助10
7秒前
pterionGao发布了新的文献求助10
7秒前
7秒前
badjack完成签到,获得积分10
8秒前
8秒前
ggg发布了新的文献求助10
9秒前
10秒前
神经网络模型完成签到,获得积分10
11秒前
11秒前
今后应助初遇之时最暖采纳,获得10
11秒前
12秒前
12秒前
共享精神应助阿宋采纳,获得10
12秒前
12秒前
suda发布了新的文献求助10
12秒前
13秒前
idannn发布了新的文献求助10
14秒前
派大星完成签到,获得积分20
15秒前
噗哩大王发布了新的文献求助30
15秒前
养生坤坤发布了新的文献求助10
15秒前
hexinyu发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091