清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-based prediction of massive perioperative allogeneic blood transfusion in cardiac surgery

围手术期 医学 输血 心脏外科 接收机工作特性 曲线下面积 外科 重症监护医学 急诊医学 内科学
作者
Thomas Tschoellitsch,Carl Böck,Tina Tomić Mahečić,Axel Hofmann,Jens Meier
出处
期刊:European Journal of Anaesthesiology [Lippincott Williams & Wilkins]
卷期号:39 (9): 766-773 被引量:12
标识
DOI:10.1097/eja.0000000000001721
摘要

Massive perioperative allogeneic blood transfusion, that is, perioperative transfusion of more than 10 units of packed red blood cells (pRBC), is one of the main contributors to perioperative morbidity and mortality in cardiac surgery. Prediction of perioperative blood transfusion might enable preemptive treatment strategies to reduce risk and improve patient outcomes while reducing resource utilisation. We, therefore, investigated the precision of five different machine learning algorithms to predict the occurrence of massive perioperative allogeneic blood transfusion in cardiac surgery at our centre.Is it possible to predict massive perioperative allogeneic blood transfusion using machine learning?Retrospective, observational study.Single adult cardiac surgery centre in Austria between 01 January 2010 and 31 December 2019.Patients undergoing cardiac surgery.Primary outcome measures were the number of patients receiving at least 10 units pRBC, the area under the curve for the receiver operating characteristics curve, the F1 score, and the negative-predictive (NPV) and positive-predictive values (PPV) of the five machine learning algorithms used to predict massive perioperative allogeneic blood transfusion.A total of 3782 (1124 female:) patients were enrolled and 139 received at least 10 pRBC units. Using all features available at hospital admission, massive perioperative allogeneic blood transfusion could be excluded rather accurately. The best area under the curve was achieved by Random Forests: 0.810 (0.76 to 0.86) with high NPV of 0.99). This was still true using only the eight most important features [area under the curve 0.800 (0.75 to 0.85)].Machine learning models may provide clinical decision support as to which patients to focus on for perioperative preventive treatment in order to preemptively reduce massive perioperative allogeneic blood transfusion by predicting, which patients are not at risk.Johannes Kepler University Ethics Committee Study Number 1091/2021, Clinicaltrials.gov identifier NCT04856618.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mannone完成签到 ,获得积分10
2秒前
21秒前
Wjc发布了新的文献求助10
24秒前
滕皓轩完成签到 ,获得积分20
28秒前
小马甲应助Wjc采纳,获得10
35秒前
cr完成签到 ,获得积分10
44秒前
1分钟前
1分钟前
1分钟前
1分钟前
11发布了新的文献求助30
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
Wjc发布了新的文献求助10
2分钟前
耍酷的觅荷完成签到 ,获得积分10
2分钟前
Wjc完成签到,获得积分10
3分钟前
合不着完成签到 ,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
Wjc关注了科研通微信公众号
3分钟前
房天川完成签到 ,获得积分10
3分钟前
3分钟前
袁青寒发布了新的文献求助10
4分钟前
4分钟前
hgsgeospan完成签到,获得积分10
4分钟前
hgs完成签到,获得积分10
4分钟前
袁青寒发布了新的文献求助10
4分钟前
4分钟前
11发布了新的文献求助10
4分钟前
Guozixin发布了新的文献求助30
4分钟前
开朗雅霜完成签到,获得积分10
5分钟前
平安完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
虚心醉蝶完成签到 ,获得积分10
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926872
求助须知:如何正确求助?哪些是违规求助? 4196392
关于积分的说明 13032658
捐赠科研通 3968788
什么是DOI,文献DOI怎么找? 2175128
邀请新用户注册赠送积分活动 1192288
关于科研通互助平台的介绍 1102741