D2FE-GAN: Decoupled dual feature extraction based GAN for MRI image synthesis

计算机科学 模态(人机交互) 人工智能 规范化(社会学) 模式识别(心理学) 特征(语言学) 编码器 仿射变换 图像(数学) 一致性(知识库) 数学 社会学 人类学 纯数学 操作系统 语言学 哲学
作者
Bo Zhan,Luping Zhou,Zhiang Li,Xi Wu,Yi‐Fei Pu,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:252: 109362-109362 被引量:17
标识
DOI:10.1016/j.knosys.2022.109362
摘要

Magnetic resonance imaging (MRI) technique can generate various tissue contrasts by using different pulse sequences and parameters. However, obtaining multiple different contrast images for the same patient is sometimes time-consuming and costly. In this paper, we propose a novel generative adversarial network based on decoupled dual feature representations (D2FE-GAN) for cross-modality MRI synthesis. Inspired by the previous works of image style transferring, we argue that the MRI images can be viewed as a compound of underlying information shared among the bodies of modalities (e.g., semantic information), and representative information varying with the styles of modalities (e.g., edges, contrasts). Different from the existing GAN-based methods that pay attention to either the body consistency or the style refinement, the proposed D2FE-GAN method considers both aspects for better synthesis. Specifically, our method decouples the underlying information and the representative information from the source modality and target modality, respectively, through two dissimilar encoders. In response to the invisibility of target modality in testing phase, we propose to employ a Residual Network firstly to generate an intermediate modality as the pseudo target modality. Subsequently, the decoupled two kinds of information will be integrated through a decoder. Here, we introduce the Adaptive Instance Normalization layer, in which the affine parameters are replaced by the mean and standard deviation of the representative information, thus completing the fusion processing of feature space information. Experimental results on BRATS2015 dataset and IXI dataset show that the proposed method outperforms the state-of-the-art image synthesis approaches in both qualitative and quantitative measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怨念深重发布了新的文献求助10
刚刚
1秒前
研友_ZGR70n完成签到 ,获得积分10
2秒前
13gly发布了新的文献求助10
2秒前
2秒前
初昀杭完成签到 ,获得积分10
2秒前
3秒前
3秒前
冷语发布了新的文献求助10
3秒前
希望天下0贩的0应助577采纳,获得30
3秒前
4秒前
5秒前
Benny发布了新的文献求助30
5秒前
zhou完成签到,获得积分10
5秒前
6秒前
大个应助li采纳,获得10
6秒前
7秒前
huangllza完成签到,获得积分10
7秒前
汉堡包应助太阳下山采纳,获得30
7秒前
zjy发布了新的文献求助10
7秒前
uss完成签到,获得积分10
9秒前
星辰大海应助夕照古风采纳,获得10
9秒前
10秒前
scccc发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
zhou发布了新的文献求助10
11秒前
李爱国应助zzzlk采纳,获得10
12秒前
12秒前
13秒前
大个应助怨念深重采纳,获得10
14秒前
HJS完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
Benny完成签到,获得积分20
17秒前
冷静雨南发布了新的文献求助10
17秒前
仁爱的寻凝完成签到,获得积分10
18秒前
18秒前
开朗的尔风完成签到,获得积分20
18秒前
笑点低凝荷完成签到,获得积分10
19秒前
星辰大海应助陈宇采纳,获得10
19秒前
tan_sg完成签到,获得积分20
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954612
求助须知:如何正确求助?哪些是违规求助? 3500783
关于积分的说明 11100882
捐赠科研通 3231219
什么是DOI,文献DOI怎么找? 1786350
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751