D2FE-GAN: Decoupled dual feature extraction based GAN for MRI image synthesis

计算机科学 模态(人机交互) 人工智能 规范化(社会学) 模式识别(心理学) 特征(语言学) 编码器 仿射变换 图像(数学) 一致性(知识库) 数学 操作系统 人类学 哲学 社会学 语言学 纯数学
作者
Bo Zhan,Luping Zhou,Zhiang Li,Xi Wu,Yi‐Fei Pu,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109362-109362 被引量:17
标识
DOI:10.1016/j.knosys.2022.109362
摘要

Magnetic resonance imaging (MRI) technique can generate various tissue contrasts by using different pulse sequences and parameters. However, obtaining multiple different contrast images for the same patient is sometimes time-consuming and costly. In this paper, we propose a novel generative adversarial network based on decoupled dual feature representations (D2FE-GAN) for cross-modality MRI synthesis. Inspired by the previous works of image style transferring, we argue that the MRI images can be viewed as a compound of underlying information shared among the bodies of modalities (e.g., semantic information), and representative information varying with the styles of modalities (e.g., edges, contrasts). Different from the existing GAN-based methods that pay attention to either the body consistency or the style refinement, the proposed D2FE-GAN method considers both aspects for better synthesis. Specifically, our method decouples the underlying information and the representative information from the source modality and target modality, respectively, through two dissimilar encoders. In response to the invisibility of target modality in testing phase, we propose to employ a Residual Network firstly to generate an intermediate modality as the pseudo target modality. Subsequently, the decoupled two kinds of information will be integrated through a decoder. Here, we introduce the Adaptive Instance Normalization layer, in which the affine parameters are replaced by the mean and standard deviation of the representative information, thus completing the fusion processing of feature space information. Experimental results on BRATS2015 dataset and IXI dataset show that the proposed method outperforms the state-of-the-art image synthesis approaches in both qualitative and quantitative measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重蜗牛完成签到,获得积分10
刚刚
帅气书白完成签到,获得积分10
1秒前
edtaa发布了新的文献求助10
1秒前
DamonChen发布了新的文献求助10
1秒前
无心的砖家完成签到,获得积分10
1秒前
落后十八发布了新的文献求助20
1秒前
sheep完成签到,获得积分10
1秒前
SciGPT应助雨雨雨采纳,获得10
2秒前
直率诗柳完成签到,获得积分10
2秒前
刚国忠完成签到,获得积分20
2秒前
屈昭阳完成签到,获得积分20
2秒前
Lawenced发布了新的文献求助10
3秒前
何文发布了新的文献求助10
4秒前
尤寄风发布了新的文献求助10
4秒前
悬夜发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
Sunny完成签到 ,获得积分10
7秒前
8秒前
每天一篇文献的小王完成签到 ,获得积分10
8秒前
一十六完成签到,获得积分10
8秒前
aikeyan完成签到,获得积分10
8秒前
我是老大应助L山间葱采纳,获得10
9秒前
9秒前
波风水门pxf完成签到,获得积分10
9秒前
小俊完成签到,获得积分10
10秒前
悬夜完成签到,获得积分10
10秒前
11秒前
狗不理发布了新的文献求助10
11秒前
edtaa发布了新的文献求助10
11秒前
11秒前
lewis17发布了新的文献求助10
12秒前
sens发布了新的文献求助10
12秒前
DamonChen完成签到,获得积分10
12秒前
NexusExplorer应助Lawenced采纳,获得10
12秒前
12秒前
WuLujie发布了新的文献求助10
12秒前
不做Aspirin完成签到 ,获得积分10
12秒前
mylove应助morry5007采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836