D2FE-GAN: Decoupled dual feature extraction based GAN for MRI image synthesis

计算机科学 模态(人机交互) 人工智能 规范化(社会学) 模式识别(心理学) 特征(语言学) 编码器 仿射变换 图像(数学) 一致性(知识库) 数学 操作系统 人类学 哲学 社会学 语言学 纯数学
作者
Bo Zhan,Luping Zhou,Zhiang Li,Xi Wu,Yi‐Fei Pu,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109362-109362 被引量:17
标识
DOI:10.1016/j.knosys.2022.109362
摘要

Magnetic resonance imaging (MRI) technique can generate various tissue contrasts by using different pulse sequences and parameters. However, obtaining multiple different contrast images for the same patient is sometimes time-consuming and costly. In this paper, we propose a novel generative adversarial network based on decoupled dual feature representations (D2FE-GAN) for cross-modality MRI synthesis. Inspired by the previous works of image style transferring, we argue that the MRI images can be viewed as a compound of underlying information shared among the bodies of modalities (e.g., semantic information), and representative information varying with the styles of modalities (e.g., edges, contrasts). Different from the existing GAN-based methods that pay attention to either the body consistency or the style refinement, the proposed D2FE-GAN method considers both aspects for better synthesis. Specifically, our method decouples the underlying information and the representative information from the source modality and target modality, respectively, through two dissimilar encoders. In response to the invisibility of target modality in testing phase, we propose to employ a Residual Network firstly to generate an intermediate modality as the pseudo target modality. Subsequently, the decoupled two kinds of information will be integrated through a decoder. Here, we introduce the Adaptive Instance Normalization layer, in which the affine parameters are replaced by the mean and standard deviation of the representative information, thus completing the fusion processing of feature space information. Experimental results on BRATS2015 dataset and IXI dataset show that the proposed method outperforms the state-of-the-art image synthesis approaches in both qualitative and quantitative measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王世缘发布了新的文献求助10
刚刚
糖炒栗子发布了新的文献求助10
刚刚
1秒前
小文发布了新的文献求助10
1秒前
科研通AI6应助TH采纳,获得10
2秒前
2秒前
2秒前
无辜的寄风完成签到,获得积分10
2秒前
3秒前
英姑应助漫梦qiqi采纳,获得10
3秒前
hotongue完成签到,获得积分10
4秒前
Naomi关注了科研通微信公众号
4秒前
4秒前
5秒前
6秒前
心语大王2发布了新的文献求助10
6秒前
7秒前
在水一方应助zzrg采纳,获得10
7秒前
Maga发布了新的文献求助10
8秒前
9秒前
lucia关注了科研通微信公众号
9秒前
星辰大海应助该饮茶了采纳,获得10
10秒前
小文完成签到,获得积分20
10秒前
11秒前
刘欢发布了新的文献求助20
12秒前
无花果应助baige666采纳,获得10
12秒前
LL发布了新的文献求助10
13秒前
13秒前
哎呦巍发布了新的文献求助10
13秒前
香蕉觅云应助xianglinnnn采纳,获得30
13秒前
14秒前
15秒前
孤蚀月驳回了Ava应助
16秒前
科研通AI6应助HY采纳,获得10
16秒前
nn发布了新的文献求助10
17秒前
wangqinlei发布了新的文献求助10
17秒前
17秒前
小蘑菇应助ri_290采纳,获得10
18秒前
Chaos完成签到,获得积分10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588315
求助须知:如何正确求助?哪些是违规求助? 4671384
关于积分的说明 14787042
捐赠科研通 4624969
什么是DOI,文献DOI怎么找? 2531757
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468276