亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

D2FE-GAN: Decoupled dual feature extraction based GAN for MRI image synthesis

计算机科学 模态(人机交互) 人工智能 规范化(社会学) 模式识别(心理学) 特征(语言学) 编码器 仿射变换 图像(数学) 一致性(知识库) 数学 操作系统 人类学 哲学 社会学 语言学 纯数学
作者
Bo Zhan,Luping Zhou,Zhiang Li,Xi Wu,Yi‐Fei Pu,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109362-109362 被引量:17
标识
DOI:10.1016/j.knosys.2022.109362
摘要

Magnetic resonance imaging (MRI) technique can generate various tissue contrasts by using different pulse sequences and parameters. However, obtaining multiple different contrast images for the same patient is sometimes time-consuming and costly. In this paper, we propose a novel generative adversarial network based on decoupled dual feature representations (D2FE-GAN) for cross-modality MRI synthesis. Inspired by the previous works of image style transferring, we argue that the MRI images can be viewed as a compound of underlying information shared among the bodies of modalities (e.g., semantic information), and representative information varying with the styles of modalities (e.g., edges, contrasts). Different from the existing GAN-based methods that pay attention to either the body consistency or the style refinement, the proposed D2FE-GAN method considers both aspects for better synthesis. Specifically, our method decouples the underlying information and the representative information from the source modality and target modality, respectively, through two dissimilar encoders. In response to the invisibility of target modality in testing phase, we propose to employ a Residual Network firstly to generate an intermediate modality as the pseudo target modality. Subsequently, the decoupled two kinds of information will be integrated through a decoder. Here, we introduce the Adaptive Instance Normalization layer, in which the affine parameters are replaced by the mean and standard deviation of the representative information, thus completing the fusion processing of feature space information. Experimental results on BRATS2015 dataset and IXI dataset show that the proposed method outperforms the state-of-the-art image synthesis approaches in both qualitative and quantitative measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
嗯哼应助Zoye采纳,获得30
55秒前
嗯哼应助Zoye采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Martin完成签到 ,获得积分10
1分钟前
2分钟前
3分钟前
cheng完成签到 ,获得积分10
3分钟前
想睡觉的小笼包完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
gwbk完成签到,获得积分10
4分钟前
科研通AI2S应助芊慧采纳,获得10
4分钟前
若眠完成签到 ,获得积分10
4分钟前
5分钟前
英姑应助明明采纳,获得10
5分钟前
芊慧发布了新的文献求助10
5分钟前
wangye完成签到 ,获得积分10
5分钟前
5分钟前
子蓼完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
细腻的仙人掌完成签到,获得积分10
6分钟前
6分钟前
沫沫发布了新的文献求助10
6分钟前
Jasper应助沫沫采纳,获得10
7分钟前
7分钟前
7分钟前
明明发布了新的文献求助10
7分钟前
7分钟前
7分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
7分钟前
kayee发布了新的文献求助10
8分钟前
8分钟前
明明完成签到,获得积分10
8分钟前
明明发布了新的文献求助10
8分钟前
老金金完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356868
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694464
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457611
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767