亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

D2FE-GAN: Decoupled dual feature extraction based GAN for MRI image synthesis

计算机科学 模态(人机交互) 人工智能 规范化(社会学) 模式识别(心理学) 特征(语言学) 编码器 仿射变换 图像(数学) 一致性(知识库) 数学 操作系统 人类学 哲学 社会学 语言学 纯数学
作者
Bo Zhan,Luping Zhou,Zhiang Li,Xi Wu,Yi‐Fei Pu,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109362-109362 被引量:17
标识
DOI:10.1016/j.knosys.2022.109362
摘要

Magnetic resonance imaging (MRI) technique can generate various tissue contrasts by using different pulse sequences and parameters. However, obtaining multiple different contrast images for the same patient is sometimes time-consuming and costly. In this paper, we propose a novel generative adversarial network based on decoupled dual feature representations (D2FE-GAN) for cross-modality MRI synthesis. Inspired by the previous works of image style transferring, we argue that the MRI images can be viewed as a compound of underlying information shared among the bodies of modalities (e.g., semantic information), and representative information varying with the styles of modalities (e.g., edges, contrasts). Different from the existing GAN-based methods that pay attention to either the body consistency or the style refinement, the proposed D2FE-GAN method considers both aspects for better synthesis. Specifically, our method decouples the underlying information and the representative information from the source modality and target modality, respectively, through two dissimilar encoders. In response to the invisibility of target modality in testing phase, we propose to employ a Residual Network firstly to generate an intermediate modality as the pseudo target modality. Subsequently, the decoupled two kinds of information will be integrated through a decoder. Here, we introduce the Adaptive Instance Normalization layer, in which the affine parameters are replaced by the mean and standard deviation of the representative information, thus completing the fusion processing of feature space information. Experimental results on BRATS2015 dataset and IXI dataset show that the proposed method outperforms the state-of-the-art image synthesis approaches in both qualitative and quantitative measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
团子发布了新的文献求助10
7秒前
CodeCraft应助可爱丹彤采纳,获得10
8秒前
14秒前
18秒前
熊建发布了新的文献求助10
20秒前
飘逸的山柏完成签到 ,获得积分10
23秒前
沐沐发布了新的文献求助10
26秒前
HaCat应助科研通管家采纳,获得10
35秒前
怕黑半仙应助科研通管家采纳,获得10
35秒前
Criminology34应助科研通管家采纳,获得30
36秒前
团子完成签到,获得积分10
38秒前
Brain完成签到 ,获得积分10
49秒前
digger2023完成签到 ,获得积分10
50秒前
简让完成签到 ,获得积分10
50秒前
pegasus0802完成签到,获得积分10
1分钟前
1分钟前
现代无敌发布了新的文献求助10
1分钟前
小小心愿发布了新的文献求助10
1分钟前
天天天晴完成签到 ,获得积分10
1分钟前
FashionBoy应助可爱丹彤采纳,获得10
1分钟前
zybbb完成签到 ,获得积分10
1分钟前
顾矜应助可爱丹彤采纳,获得10
1分钟前
刘萌发布了新的文献求助10
1分钟前
1分钟前
Gabriel发布了新的文献求助10
2分钟前
浮游应助bxy采纳,获得10
2分钟前
挖掘机完成签到,获得积分10
2分钟前
浮游应助Gabriel采纳,获得10
2分钟前
Jasper应助雨之夏日采纳,获得10
2分钟前
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
云蓝完成签到 ,获得积分10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
浮游应助默默善愁采纳,获得10
2分钟前
深情安青应助默默善愁采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639