Merge Multiscale Attention Mechanism MSGAN-ACNN-BiLSTM Bearing Fault Diagnosis Model

合并(版本控制) 计算机科学 断层(地质) 数据挖掘 一般化 人工智能 比例(比率) 方位(导航) 理论(学习稳定性) 训练集 模式识别(心理学) 机器学习 数学 情报检索 地震学 数学分析 地质学 物理 量子力学
作者
Minglei Zheng,Qi Chang,Junfeng Man,Peng Cheng,Yi Liu,Ke Xu
出处
期刊:Communications in computer and information science 卷期号:: 599-614
标识
DOI:10.1007/978-981-19-4546-5_47
摘要

To solve the problem that the sample of rolling bearing in actual working condition is seriously imbalanced, which leads to the poor performance on accuracy and generalization of fault diagnosis model. In this paper, A multi-scale bearing fault diagnosis model MSGAN-ACNN-BiLSTM with progressive generation and multi-scale attention mechanism is proposed for imbalanced data. Firstly, the original imbalanced fault samples are transformed into multi-scale frequency domain samples and input into the multi-scale generative adversarial network for training. After the network reaches Nash equilibrium, the progressive generated multi-scale fault samples are mixed into the original imbalanced samples, so as to solve the problem of serious imbalance data in actual conditions. Then, the re-balanced multi-scale datasets is input into the diagnostic model for training, which can extract multi-scale global and local feature information and improve the performance of the model, so as to realize the accurate classification of bearing fault diagnosis under imbalanced data. This experiment is based on the data set of UConn and CWRU. The experimental results show that the performance of the generated data quality and diagnosis accuracy of the model in each dataset is higher than other comparison methods, which proves the stability and effectiveness of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王木木完成签到,获得积分10
刚刚
刚刚
刚刚
xixi发布了新的文献求助10
刚刚
刚刚
我是老大应助图图采纳,获得10
1秒前
1秒前
1秒前
yaofengle完成签到,获得积分10
1秒前
poppy完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
Jasper应助FXQ123_范采纳,获得10
4秒前
汤柏钧发布了新的文献求助10
4秒前
追风少年应助文件撤销了驳回
4秒前
科研通AI2S应助1234采纳,获得10
5秒前
5秒前
6秒前
jie发布了新的文献求助10
7秒前
7秒前
iveuplife完成签到,获得积分10
7秒前
7秒前
昌忆丹发布了新的文献求助30
7秒前
8秒前
chase完成签到,获得积分10
8秒前
Lucas应助X_X采纳,获得10
8秒前
hangfu发布了新的文献求助10
8秒前
万能图书馆应助32采纳,获得10
8秒前
完美世界应助ee采纳,获得10
9秒前
xuanxin完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
孙彩瑛完成签到,获得积分10
10秒前
踏实寒梅发布了新的文献求助10
10秒前
FU发布了新的文献求助10
10秒前
Mine_cherry应助WangYZ采纳,获得30
10秒前
刻苦秋尽发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762