Relation-Aggregated Cross-Graph Correlation Learning for Fine-Grained Image–Text Retrieval

计算机科学 关系(数据库) 图形 人工智能 特征(语言学) 情报检索 特征学习 编码器 光学(聚焦) 模式识别(心理学) 自然语言处理 数据挖掘 理论计算机科学 物理 光学 操作系统 语言学 哲学
作者
Shu‐Juan Peng,Yi He,Xin Liu,Yiu‐ming Cheung,Xing Xu,Zhen Cui
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 2194-2207 被引量:13
标识
DOI:10.1109/tnnls.2022.3188569
摘要

Fine-grained image-text retrieval has been a hot research topic to bridge the vision and languages, and its main challenge is how to learn the semantic correspondence across different modalities. The existing methods mainly focus on learning the global semantic correspondence or intramodal relation correspondence in separate data representations, but which rarely consider the intermodal relation that interactively provide complementary hints for fine-grained semantic correlation learning. To address this issue, we propose a relation-aggregated cross-graph (RACG) model to explicitly learn the fine-grained semantic correspondence by aggregating both intramodal and intermodal relations, which can be well utilized to guide the feature correspondence learning process. More specifically, we first build semantic-embedded graph to explore both fine-grained objects and their relations of different media types, which aim not only to characterize the object appearance in each modality, but also to capture the intrinsic relation information to differentiate intramodal discrepancies. Then, a cross-graph relation encoder is newly designed to explore the intermodal relation across different modalities, which can mutually boost the cross-modal correlations to learn more precise intermodal dependencies. Besides, the feature reconstruction module and multihead similarity alignment are efficiently leveraged to optimize the node-level semantic correspondence, whereby the relation-aggregated cross-modal embeddings between image and text are discriminatively obtained to benefit various image-text retrieval tasks with high retrieval performance. Extensive experiments evaluated on benchmark datasets quantitatively and qualitatively verify the advantages of the proposed framework for fine-grained image-text retrieval and show its competitive performance with the state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助OvO采纳,获得10
2秒前
qipaojuzhi发布了新的文献求助10
3秒前
科研渣子发布了新的文献求助10
4秒前
撒旦撒大苏打的完成签到,获得积分20
4秒前
充电宝应助斑马采纳,获得10
9秒前
10秒前
zokker应助帅气的雁枫采纳,获得10
12秒前
13秒前
HL应助惊蛰采纳,获得10
14秒前
情怀应助无情听南采纳,获得10
14秒前
舒心大米完成签到,获得积分20
15秒前
TIGun发布了新的文献求助10
16秒前
16秒前
17秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
21秒前
OvO发布了新的文献求助10
21秒前
舒心大米发布了新的文献求助10
21秒前
惘然完成签到 ,获得积分10
22秒前
23秒前
25秒前
跳跃的凌文完成签到 ,获得积分10
25秒前
25秒前
斑马发布了新的文献求助10
26秒前
cdercder应助LETHE采纳,获得30
27秒前
海豚发布了新的文献求助10
32秒前
邢文瑞发布了新的文献求助10
33秒前
呆萌的鼠标完成签到 ,获得积分0
33秒前
勤奋的安梦完成签到,获得积分10
34秒前
35秒前
天地一体完成签到,获得积分10
36秒前
40秒前
科研通AI5应助ShuV采纳,获得10
41秒前
wan发布了新的文献求助10
41秒前
NexusExplorer应助qipaojuzhi采纳,获得10
42秒前
李健应助伏远梦采纳,获得10
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680033
求助须知:如何正确求助?哪些是违规求助? 3232579
关于积分的说明 9803837
捐赠科研通 2943820
什么是DOI,文献DOI怎么找? 1614276
邀请新用户注册赠送积分活动 762131
科研通“疑难数据库(出版商)”最低求助积分说明 737237