亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

(Invited) Considerations and Strategies for High-Temperature Ultra-Wide Bandgap Gallium Oxide Power Modules

材料科学 碳化硅 光电子学 氮化镓 宽禁带半导体 功率半导体器件 带隙 半导体 工程物理 结温 功率密度 纳米技术 功率(物理) 电气工程 电压 复合材料 物理 工程类 图层(电子) 量子力学 冶金
作者
Christina DiMarino,Benjamin Albano,Boyan Wang,Yuhao Zhang
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (31): 1320-1320 被引量:1
标识
DOI:10.1149/ma2022-01311320mtgabs
摘要

There is a compelling need for high-density power electronic components and systems capable of operation at high ambient temperatures in automotive, aerospace, and down-hole applications. However, these needs are challenging the fundamental limit of silicon-based converters. While wide-bandgap (WBG) power semiconductors, particularly silicon carbide (SiC) and gallium nitride (GaN), have become promising alternatives to silicon (Si), they show diminished performance benefits at high temperatures. In the last several years, an ultra-wide-bandgap (UWBG) semiconductor, gallium oxide (Ga2O3), has emerged as a viable candidate for high-temperature power electronics with capabilities beyond existing technologies due to its large bandgap, controllable doping, and the availability of large-diameter, relatively-inexpensive substrates. The fundamental limit for high-temperature operation of semiconductors is the concentration of intrinsic carriers, which increases with temperature. Thanks to the UWBG of Ga2O3 (4.8 eV, compared to 1.1 eV for Si, 3.2 eV for SiC, and 3.4 eV for GaN), it achieves over 10-times lower intrinsic carrier concentration than Si. Compared to Si, SiC, and GaN devices, unipolar Ga2O3 devices also have superior theoretical limit for the trade-off between on-resistance and breakdown voltage, enabling a higher power conversion efficiency and power density. While Ga2O3 shows promise in these respects, due to its low thermal conductivity, conventional packaging and cooling strategies are not suitable. Simulations reveal that, compared to SiC, Ga2O3 power devices experience greater hot spot effects with higher peak junction temperatures and greater temperature differences across the chip, which could reduce the reliability of the packaged device. Simulations and preliminary experiments show that top-side cooling can counteract these effects and result in comparable thermal performance to SiC devices. This improvement shows the significant impact that the package and cooling strategy have on the performance of the Ga2O3 devices. This presentation will review this critical device-package-thermal relationship with electrothermal simulations and experimental measurements. Moreover, while Ga2O3 power devices have demonstrated superior high-temperature stability compared to SiC devices, package advancements at temperatures above 200°C are limited. The major limitation for high-temperature power modules is the encapsulation. The encapsulation provides essential electrical insulation, as well as corrosion resistance and protection. Conventional encapsulants are polymers, which have high dielectric strength for good electrical insulation, and low elastic modulus for low thermo-mechanical stress. However, typical polymers degrade rapidly at temperatures above 200°C. Accordingly, non-polymeric materials are needed for higher temperature operation. Hydroset ceramics have been evaluated as a high-temperature encapsulant. However, their porous structure reduces their electrical insulation effectiveness, and can cause reduced corrosion resistance. An alternate non-polymeric material is glass. Low-melting-temperature glass composites have emerged as a promising high-temperature encapsulant. It was found that the lead-glass composite has improved thermal stability compared to commercial polymeric materials. While the partial discharge inception voltage (PDIV) of the polymeric materials decreased by more than 80 % after just 100-200 hours of soaking at 250°C, the lead-glass composite samples showed no change in PDIV after 1000 hours. This feature is particularly important for realizing the full potential of Ga2O3, which has a critical breakdown field strength of 8 MV/cm. Accordingly, to operate these devices at high temperature and high-voltage, the package encapsulant must simultaneously have high thermal stability and dielectric strength. This presentation will review advancements in power module packaging that are needed to realize the full potential of Ga2O3 power devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maher发布了新的文献求助20
16秒前
17秒前
学术混子发布了新的文献求助10
23秒前
hihi完成签到,获得积分10
33秒前
37秒前
月牙儿完成签到,获得积分20
40秒前
月牙儿发布了新的文献求助30
43秒前
橘子猫完成签到,获得积分10
50秒前
机灵的幼菱完成签到,获得积分10
58秒前
xiaolang2004完成签到,获得积分10
1分钟前
共享精神应助月牙儿采纳,获得10
1分钟前
1分钟前
坦率若魔发布了新的文献求助10
1分钟前
忧郁如柏完成签到,获得积分10
1分钟前
yummytaro完成签到,获得积分10
2分钟前
zs完成签到 ,获得积分10
2分钟前
奋斗的从梦完成签到,获得积分20
2分钟前
3分钟前
DYXX完成签到 ,获得积分10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
maher完成签到,获得积分10
4分钟前
4分钟前
caca完成签到,获得积分10
4分钟前
学术混子发布了新的文献求助10
4分钟前
4分钟前
八个猪宝贝完成签到 ,获得积分10
4分钟前
香蕉觅云应助我喜欢下雪采纳,获得10
4分钟前
4分钟前
4分钟前
大气如曼发布了新的文献求助10
4分钟前
4分钟前
义气的书雁完成签到,获得积分10
5分钟前
神勇朝雪完成签到,获得积分10
5分钟前
堪冷之完成签到,获得积分10
5分钟前
共享精神应助我喜欢下雪采纳,获得10
5分钟前
传奇完成签到 ,获得积分10
6分钟前
blenx完成签到,获得积分10
6分钟前
6分钟前
自然的南露完成签到 ,获得积分10
6分钟前
www完成签到 ,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746083
求助须知:如何正确求助?哪些是违规求助? 3288980
关于积分的说明 10061615
捐赠科研通 3005242
什么是DOI,文献DOI怎么找? 1650144
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242