Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助chimchim采纳,获得10
1秒前
哦o完成签到,获得积分10
2秒前
自然的听南完成签到 ,获得积分10
2秒前
坦呐完成签到,获得积分10
3秒前
开心幻巧完成签到,获得积分10
3秒前
ww完成签到 ,获得积分10
4秒前
4秒前
JHL发布了新的文献求助10
4秒前
xr完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
orixero应助jaderuan采纳,获得10
8秒前
bkagyin应助学学学采纳,获得10
8秒前
cC应助童童采纳,获得10
8秒前
核桃发布了新的文献求助50
9秒前
10秒前
10秒前
科研通AI6应助靓丽的寒蕾采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
啦啦啦完成签到,获得积分10
13秒前
真真完成签到,获得积分20
13秒前
13秒前
张志超发布了新的文献求助10
14秒前
嘿嘿发布了新的文献求助10
14秒前
超帅悟空发布了新的文献求助10
14秒前
大机灵发布了新的文献求助10
14秒前
QI完成签到 ,获得积分10
15秒前
hao发布了新的文献求助10
15秒前
YuChen169完成签到 ,获得积分10
16秒前
真真发布了新的文献求助30
16秒前
16秒前
ghhu完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299