Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
221完成签到,获得积分10
刚刚
华仔完成签到,获得积分10
刚刚
iNk应助酷酷的山雁采纳,获得10
3秒前
陈慧钦发布了新的文献求助10
3秒前
3秒前
tiatia应助5999采纳,获得10
3秒前
5秒前
香蕉觅云应助Lee采纳,获得10
6秒前
充电宝应助研友_8Kedgn采纳,获得10
7秒前
研研发布了新的文献求助10
7秒前
汉堡包应助blueskyzhi采纳,获得10
7秒前
皮蛋完成签到,获得积分10
9秒前
9秒前
鱼贝贝完成签到 ,获得积分10
11秒前
懒洋洋完成签到 ,获得积分10
13秒前
yaxuandeng完成签到,获得积分10
14秒前
14秒前
浮游应助wocao采纳,获得10
15秒前
Lee发布了新的文献求助10
17秒前
18秒前
deeperection发布了新的文献求助10
20秒前
22秒前
丘比特应助ahfjk采纳,获得10
23秒前
youxiu完成签到 ,获得积分10
23秒前
24秒前
dolabmu完成签到 ,获得积分10
25秒前
25秒前
26秒前
jiaxiangxia完成签到 ,获得积分10
27秒前
wang发布了新的文献求助10
27秒前
28秒前
HuSP完成签到,获得积分10
30秒前
菜菜博士发布了新的文献求助10
31秒前
xiaoqi完成签到,获得积分10
31秒前
一包辣条完成签到,获得积分10
31秒前
Rong完成签到 ,获得积分10
31秒前
研友_8Kedgn发布了新的文献求助10
33秒前
应飞飞完成签到,获得积分10
33秒前
甜甜圈完成签到 ,获得积分10
33秒前
厚德载物完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429