Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向晚完成签到 ,获得积分10
1秒前
naych发布了新的文献求助10
3秒前
3秒前
lili发布了新的文献求助10
4秒前
yifei完成签到,获得积分10
4秒前
暮光之城完成签到,获得积分10
5秒前
Chen完成签到,获得积分10
5秒前
YaoQi完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
pluto应助早安采纳,获得10
8秒前
辛卫铎完成签到,获得积分10
9秒前
科目三应助咸鱼采纳,获得30
9秒前
Chen发布了新的文献求助10
9秒前
11秒前
风思雅发布了新的文献求助10
11秒前
风中雨竹发布了新的文献求助10
13秒前
TXQ发布了新的文献求助10
13秒前
14秒前
快乐的龙猫完成签到,获得积分10
16秒前
16秒前
小马甲应助小小医采纳,获得10
16秒前
答辩完成签到 ,获得积分10
18秒前
关耳发布了新的文献求助10
19秒前
李爱国应助lili采纳,获得10
20秒前
今后应助哈机密南北撸多采纳,获得10
21秒前
22秒前
老虎皮发布了新的文献求助10
22秒前
鞘皮完成签到,获得积分10
23秒前
Jasper应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得30
25秒前
森活鱼块应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
香蕉诗蕊应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335