Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到,获得积分10
刚刚
于瑜与余完成签到 ,获得积分10
1秒前
听雨眠完成签到 ,获得积分10
2秒前
852应助xxy采纳,获得10
2秒前
2秒前
美梦成真福禄寿完成签到 ,获得积分10
3秒前
万能图书馆应助幻心采纳,获得10
3秒前
叶子完成签到 ,获得积分10
3秒前
共享精神应助naturehome采纳,获得10
3秒前
称心乐枫完成签到,获得积分10
4秒前
研友_84mPRL发布了新的文献求助10
4秒前
辛勤安梦完成签到,获得积分10
4秒前
健忘惜海完成签到,获得积分10
4秒前
4秒前
JIN发布了新的文献求助10
4秒前
4秒前
atonnng发布了新的文献求助30
4秒前
kk99123应助毕业即胜利采纳,获得10
5秒前
wlscj应助jjj采纳,获得20
5秒前
淡定草丛完成签到 ,获得积分10
5秒前
ccc完成签到 ,获得积分10
5秒前
繁荣的安双完成签到,获得积分10
6秒前
6秒前
小唐完成签到,获得积分10
6秒前
snowpie完成签到 ,获得积分10
6秒前
Tim完成签到,获得积分10
7秒前
8秒前
tanx发布了新的文献求助10
8秒前
SciGPT应助海洋球采纳,获得10
8秒前
邱晓文完成签到 ,获得积分20
8秒前
8秒前
9秒前
LYH发布了新的文献求助10
9秒前
灿烂千阳完成签到,获得积分10
9秒前
快乐的素完成签到 ,获得积分10
9秒前
10秒前
viviji完成签到,获得积分10
10秒前
健壮道天应助bule采纳,获得10
10秒前
10秒前
真实的一鸣完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439