Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助清蒸鱼采纳,获得10
刚刚
完美冷安完成签到,获得积分10
刚刚
刚刚
1秒前
borisgugugugu完成签到,获得积分10
1秒前
夕沫完成签到,获得积分10
1秒前
林子发布了新的文献求助10
1秒前
李文雨完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
海草不会做题完成签到,获得积分10
2秒前
jlwang发布了新的文献求助10
2秒前
5321发布了新的文献求助10
2秒前
aabbcc完成签到 ,获得积分10
2秒前
ding应助YeeLeeLee采纳,获得10
2秒前
江思可完成签到,获得积分10
3秒前
香蕉醉山发布了新的文献求助10
3秒前
小马甲应助大胆麦片采纳,获得10
4秒前
zhaozhao完成签到,获得积分10
4秒前
4秒前
酒精过敏发布了新的文献求助10
4秒前
浮游应助h好运来呀采纳,获得10
4秒前
4秒前
喜悦的清炎完成签到 ,获得积分10
5秒前
舒心小凡完成签到,获得积分10
5秒前
bloodgod12345完成签到,获得积分10
6秒前
酷酷的如波完成签到 ,获得积分10
6秒前
李爱国应助xxx采纳,获得10
6秒前
Akim应助biiii采纳,获得10
6秒前
5476完成签到,获得积分10
7秒前
borisgugugugu发布了新的文献求助80
7秒前
orixero应助5321采纳,获得10
7秒前
忆梦发布了新的文献求助10
7秒前
东邪西毒加任我行完成签到,获得积分10
7秒前
8秒前
辉辉完成签到,获得积分10
8秒前
8秒前
FashionBoy应助典雅的俊驰采纳,获得10
8秒前
科研通AI6应助yuanyuan采纳,获得10
9秒前
能干的幻丝完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279