Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
刚刚
Owen应助吴兴倩采纳,获得10
刚刚
iY完成签到 ,获得积分10
1秒前
科研通AI6应助书瑶采纳,获得10
1秒前
1秒前
1秒前
阿卷发布了新的文献求助10
1秒前
Kittymiaoo完成签到,获得积分10
2秒前
orixero应助光电采纳,获得10
2秒前
呼叫554发布了新的文献求助10
2秒前
晴天娃娃发布了新的文献求助10
2秒前
饭饭大王发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
ori关闭了ori文献求助
3秒前
3秒前
大方小凡完成签到,获得积分10
3秒前
xuuuuu完成签到,获得积分10
3秒前
灰白发布了新的文献求助10
3秒前
3秒前
马家辉发布了新的文献求助10
4秒前
在水一方应助chen采纳,获得10
4秒前
FashionBoy应助Menahemxie采纳,获得10
4秒前
Jared应助玩命的芝麻采纳,获得10
4秒前
文静季节完成签到,获得积分20
4秒前
4秒前
吉吉完成签到,获得积分10
5秒前
HEYUYU发布了新的文献求助10
5秒前
moonpie关注了科研通微信公众号
6秒前
6秒前
6秒前
专注的曼卉发布了新的文献求助100
6秒前
haimianbaobao发布了新的文献求助10
6秒前
7秒前
7秒前
123发布了新的文献求助10
8秒前
8秒前
科目三应助Khr1stINK采纳,获得10
8秒前
8秒前
8秒前
考博圣体完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482