亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关伯兰发布了新的文献求助10
1秒前
lijiauyi1994完成签到,获得积分10
6秒前
科研通AI6应助LALA采纳,获得10
7秒前
sunyt发布了新的文献求助10
25秒前
31秒前
sunyt完成签到,获得积分10
31秒前
竹筏过海完成签到,获得积分0
38秒前
So完成签到 ,获得积分10
39秒前
40秒前
冷艳的语雪完成签到 ,获得积分10
50秒前
Criminology34应助科研通管家采纳,获得30
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
mashibeo应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
51秒前
58秒前
58秒前
今后应助Lumosii采纳,获得10
1分钟前
情怀应助hzk采纳,获得10
1分钟前
JG完成签到 ,获得积分10
1分钟前
1分钟前
甜甜的紫菜完成签到 ,获得积分10
1分钟前
Cyris完成签到,获得积分10
1分钟前
1分钟前
甜甜纸飞机完成签到 ,获得积分10
1分钟前
不知名的呆毛完成签到,获得积分10
1分钟前
今后应助sxmt123456789采纳,获得10
1分钟前
1分钟前
nanana完成签到 ,获得积分10
1分钟前
allover完成签到,获得积分10
1分钟前
在水一方应助Jiang采纳,获得10
1分钟前
hzk发布了新的文献求助10
1分钟前
1分钟前
叮叮当关注了科研通微信公众号
1分钟前
慕青应助开拖拉机的芍药采纳,获得10
1分钟前
nidd0113完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454743
求助须知:如何正确求助?哪些是违规求助? 4562127
关于积分的说明 14284753
捐赠科研通 4485948
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447784
关于科研通互助平台的介绍 1422985