Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aoba发布了新的文献求助20
刚刚
1秒前
Srishti完成签到,获得积分10
1秒前
彩色的电脑完成签到,获得积分10
1秒前
lebron发布了新的文献求助10
3秒前
4秒前
龙龙龙完成签到,获得积分10
6秒前
称心问凝发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI6应助无语的稀采纳,获得10
8秒前
小杭76应助yiqi采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
酷波er应助idemipere采纳,获得10
13秒前
aslink完成签到,获得积分10
14秒前
星辰大海应助lebron采纳,获得10
14秒前
16秒前
林夕完成签到,获得积分10
16秒前
昊行天下完成签到 ,获得积分10
16秒前
落寞向松完成签到 ,获得积分10
17秒前
Jasper应助Also采纳,获得30
18秒前
18秒前
斯文败类应助lenon采纳,获得10
19秒前
19秒前
syjc完成签到,获得积分20
20秒前
22秒前
儒雅的小懒虫完成签到 ,获得积分10
22秒前
22秒前
明天不熬夜完成签到,获得积分10
23秒前
搁浅发布了新的文献求助10
24秒前
Hello应助火星上如花采纳,获得10
24秒前
25秒前
27秒前
中中中中中完成签到,获得积分20
27秒前
27秒前
金金发布了新的文献求助10
27秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428317
求助须知:如何正确求助?哪些是违规求助? 4542326
关于积分的说明 14179967
捐赠科研通 4459943
什么是DOI,文献DOI怎么找? 2445522
邀请新用户注册赠送积分活动 1436716
关于科研通互助平台的介绍 1413878