亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum Chemical Calculations and Machine Learning Predictions Innovate Synthesis for High-Performance Optical Gold Nanorods

纳米棒 纳米结构 纳米技术 材料科学 胶体金 量子点 表征(材料科学) 计算机科学 纳米颗粒
作者
Jinchang Yin,Haonan Wu,Jintao Zhang,Shuangshuang Wu,Hongting Zheng,Fuli Zhao,Yuanzhi Shao
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (13): 5928-5937 被引量:12
标识
DOI:10.1021/acs.chemmater.2c00839
摘要

Understanding the optical properties of gold nanorods (GNRs) in the colloidal state is crucial to engineering them for versatile applications in many fields. Concomitant gold nanospheres (GNSs) are easily involved in GNR synthesis, incurring a negative effect on the GNR performance. To unravel the underlying mechanism, we constructed a GNR–GNS heterodimer to imitate their colloidal state and calculated the relevant optical and electronic properties through a quantum chemical approach. The calculations reveal that GNSs prevent certain charge-transfer excitations of adjacent GNRs by affecting the electronic structure and thereby the excitation behavior of the GNR. We synthesized 310 sets of GNR–GNS colloidal solutions with a seed-mediated growth method and then measured their absorption spectra to extract the datasets available for 11 machine learning algorithms. Among them, XGBoost had the best prediction accuracy of over 94%. A direct relevance from the initial synthesis parameters to the final optical properties of GNR–GNS colloids has been successfully identified by the machine learning approach, which could skip the cumbersome step-by-step procedure used for the conventional nanostructure characterization as well as optimize the batch GNR synthesis process with improved GNR performance simultaneously. Methodologically, such a three-in-one approach combining chemical synthesis, quantum chemical calculations, and machine learning predictions can be extended to other chemical synthetic studies, with methodological guidance to chemistry and materials science researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
那个谁关注了科研通微信公众号
9秒前
大模型应助明理太君采纳,获得10
11秒前
隐形曼青应助何日寻采纳,获得10
12秒前
荷兰香猪发布了新的文献求助10
16秒前
211JZH完成签到 ,获得积分10
31秒前
OmniQuan完成签到,获得积分10
33秒前
36秒前
42秒前
44秒前
45秒前
49秒前
53秒前
Yuna96发布了新的文献求助10
54秒前
年轻书兰完成签到 ,获得积分10
56秒前
57秒前
追风少年完成签到 ,获得积分10
1分钟前
贺喆发布了新的文献求助10
1分钟前
今后应助贺喆采纳,获得10
1分钟前
贺喆完成签到,获得积分20
1分钟前
1分钟前
丘比特应助Yuna96采纳,获得10
1分钟前
1分钟前
李健应助小冯看不懂采纳,获得10
1分钟前
1分钟前
六六完成签到 ,获得积分10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
香蕉觅云应助科研通管家采纳,获得100
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
Honor发布了新的文献求助10
1分钟前
周游完成签到 ,获得积分10
1分钟前
1分钟前
breklue关注了科研通微信公众号
2分钟前
雍远望发布了新的文献求助10
2分钟前
2分钟前
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
桐桐应助雍远望采纳,获得10
2分钟前
汤姆凯特发布了新的文献求助10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126877
求助须知:如何正确求助?哪些是违规求助? 4330184
关于积分的说明 13492960
捐赠科研通 4165531
什么是DOI,文献DOI怎么找? 2283452
邀请新用户注册赠送积分活动 1284485
关于科研通互助平台的介绍 1224297