iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model

文字2vec 计算机科学 化学 随机森林 人工智能 机器学习 卷积神经网络 计算生物学 药物发现 数据挖掘 生物信息学 嵌入 生物
作者
Hiroyuki Kurata,Sho Tsukiyama,Balachandran Manavalan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:12
标识
DOI:10.1093/bib/bbac265
摘要

Abstract The COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance. To reduce the time and expense involved in screening thousands of peptides and assaying their antiviral activity, computational predictors for identifying anti-coronavirus peptides (ACVPs) are needed. However, few experimentally verified ACVP samples are available, even though a relatively large number of antiviral peptides (AVPs) have been discovered. In this study, we attempted to predict ACVPs using an AVP dataset and a small collection of ACVPs. Using conventional features, a binary profile and a word-embedding word2vec (W2V), we systematically explored five different machine learning methods: Transformer, Convolutional Neural Network, bidirectional Long Short-Term Memory, Random Forest (RF) and Support Vector Machine. Via exhaustive searches, we found that the RF classifier with W2V consistently achieved better performance on different datasets. The two main controlling factors were: (i) the dataset-specific W2V dictionary was generated from the training and independent test datasets instead of the widely used general UniProt proteome and (ii) a systematic search was conducted and determined the optimal k-mer value in W2V, which provides greater discrimination between positive and negative samples. Therefore, our proposed method, named iACVP, consistently provides better prediction performance compared with existing state-of-the-art methods. To assist experimentalists in identifying putative ACVPs, we implemented our model as a web server accessible via the following link: http://kurata35.bio.kyutech.ac.jp/iACVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现代的bb完成签到,获得积分10
1秒前
吉毛毛完成签到,获得积分20
1秒前
yyy完成签到,获得积分20
1秒前
2秒前
可爱的函函应助神雕侠采纳,获得10
3秒前
3秒前
科研通AI5应助傲娇的星星采纳,获得10
5秒前
baijx完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
7秒前
iNk应助吉毛毛采纳,获得20
7秒前
东瓜山完成签到 ,获得积分10
7秒前
ATLI应助yyy采纳,获得20
8秒前
科研通AI5应助Yummy采纳,获得10
8秒前
8秒前
诗梦完成签到,获得积分10
8秒前
LingC完成签到,获得积分10
9秒前
善良发布了新的文献求助10
9秒前
Jay发布了新的文献求助10
10秒前
hurry_ing完成签到,获得积分10
10秒前
10秒前
科研小民工应助mc1220采纳,获得30
11秒前
hy发布了新的文献求助30
11秒前
申子发布了新的文献求助10
11秒前
Owen应助水果采纳,获得10
11秒前
闾丘广缘发布了新的文献求助10
11秒前
张zhang应助老张采纳,获得10
12秒前
贪玩海之完成签到,获得积分10
12秒前
欢迎欢迎发布了新的文献求助10
12秒前
13秒前
妍小猪发布了新的文献求助10
13秒前
14秒前
gzsy发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668364
求助须知:如何正确求助?哪些是违规求助? 3226616
关于积分的说明 9770744
捐赠科研通 2936575
什么是DOI,文献DOI怎么找? 1608673
邀请新用户注册赠送积分活动 759769
科研通“疑难数据库(出版商)”最低求助积分说明 735571