已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model

文字2vec 计算机科学 化学 随机森林 人工智能 机器学习 卷积神经网络 计算生物学 药物发现 数据挖掘 生物信息学 嵌入 生物
作者
Hiroyuki Kurata,Sho Tsukiyama,Balachandran Manavalan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:12
标识
DOI:10.1093/bib/bbac265
摘要

Abstract The COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance. To reduce the time and expense involved in screening thousands of peptides and assaying their antiviral activity, computational predictors for identifying anti-coronavirus peptides (ACVPs) are needed. However, few experimentally verified ACVP samples are available, even though a relatively large number of antiviral peptides (AVPs) have been discovered. In this study, we attempted to predict ACVPs using an AVP dataset and a small collection of ACVPs. Using conventional features, a binary profile and a word-embedding word2vec (W2V), we systematically explored five different machine learning methods: Transformer, Convolutional Neural Network, bidirectional Long Short-Term Memory, Random Forest (RF) and Support Vector Machine. Via exhaustive searches, we found that the RF classifier with W2V consistently achieved better performance on different datasets. The two main controlling factors were: (i) the dataset-specific W2V dictionary was generated from the training and independent test datasets instead of the widely used general UniProt proteome and (ii) a systematic search was conducted and determined the optimal k-mer value in W2V, which provides greater discrimination between positive and negative samples. Therefore, our proposed method, named iACVP, consistently provides better prediction performance compared with existing state-of-the-art methods. To assist experimentalists in identifying putative ACVPs, we implemented our model as a web server accessible via the following link: http://kurata35.bio.kyutech.ac.jp/iACVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜子落完成签到 ,获得积分10
刚刚
东瓜土豆发布了新的文献求助10
1秒前
而已完成签到,获得积分10
1秒前
天真的乌完成签到 ,获得积分10
2秒前
无限的妙柏完成签到,获得积分10
2秒前
3秒前
小李完成签到 ,获得积分10
4秒前
jingutaimi完成签到,获得积分10
4秒前
NexusExplorer应助文静不凡采纳,获得10
10秒前
慕青应助Dylan采纳,获得10
12秒前
12秒前
WENBENDING完成签到,获得积分10
13秒前
紫薰完成签到,获得积分10
14秒前
大模型应助明亮无颜采纳,获得10
15秒前
aldehyde应助yunjian1583采纳,获得100
16秒前
CMUSK完成签到 ,获得积分10
17秒前
闪闪蜜粉完成签到 ,获得积分10
17秒前
羊村霸总懒大王完成签到 ,获得积分10
18秒前
HXY发布了新的文献求助10
18秒前
yiyi完成签到 ,获得积分10
19秒前
上好佳完成签到,获得积分10
20秒前
20秒前
22秒前
simon完成签到 ,获得积分10
22秒前
今天很ok完成签到 ,获得积分10
24秒前
25秒前
韩东瑾发布了新的文献求助10
26秒前
jiajia完成签到 ,获得积分10
26秒前
26秒前
菜根谭完成签到 ,获得积分10
27秒前
白夜完成签到 ,获得积分10
27秒前
坚强紫山完成签到,获得积分10
27秒前
迅速的易巧完成签到 ,获得积分10
27秒前
隐形曼青应助MM采纳,获得10
28秒前
雨琴完成签到,获得积分10
28秒前
tovfix发布了新的文献求助10
28秒前
cindy发布了新的文献求助10
29秒前
30秒前
艳阳天完成签到 ,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469836
求助须知:如何正确求助?哪些是违规求助? 4572836
关于积分的说明 14337266
捐赠科研通 4499758
什么是DOI,文献DOI怎么找? 2465216
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428246