iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model

文字2vec 计算机科学 化学 随机森林 人工智能 机器学习 卷积神经网络 计算生物学 药物发现 数据挖掘 生物信息学 嵌入 生物
作者
Hiroyuki Kurata,Sho Tsukiyama,Balachandran Manavalan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:12
标识
DOI:10.1093/bib/bbac265
摘要

Abstract The COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance. To reduce the time and expense involved in screening thousands of peptides and assaying their antiviral activity, computational predictors for identifying anti-coronavirus peptides (ACVPs) are needed. However, few experimentally verified ACVP samples are available, even though a relatively large number of antiviral peptides (AVPs) have been discovered. In this study, we attempted to predict ACVPs using an AVP dataset and a small collection of ACVPs. Using conventional features, a binary profile and a word-embedding word2vec (W2V), we systematically explored five different machine learning methods: Transformer, Convolutional Neural Network, bidirectional Long Short-Term Memory, Random Forest (RF) and Support Vector Machine. Via exhaustive searches, we found that the RF classifier with W2V consistently achieved better performance on different datasets. The two main controlling factors were: (i) the dataset-specific W2V dictionary was generated from the training and independent test datasets instead of the widely used general UniProt proteome and (ii) a systematic search was conducted and determined the optimal k-mer value in W2V, which provides greater discrimination between positive and negative samples. Therefore, our proposed method, named iACVP, consistently provides better prediction performance compared with existing state-of-the-art methods. To assist experimentalists in identifying putative ACVPs, we implemented our model as a web server accessible via the following link: http://kurata35.bio.kyutech.ac.jp/iACVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后雨柏完成签到 ,获得积分10
刚刚
关琦完成签到,获得积分10
1秒前
pluto应助zd采纳,获得50
1秒前
英俊的铭应助陈__采纳,获得10
2秒前
爆闪小鸡爪完成签到 ,获得积分10
2秒前
从容芮应助zheshi1采纳,获得10
4秒前
端庄半凡完成签到 ,获得积分10
4秒前
文静的西牛完成签到,获得积分10
4秒前
5秒前
旭宝儿发布了新的文献求助10
6秒前
专注慕晴发布了新的文献求助30
7秒前
结实山水完成签到 ,获得积分10
7秒前
摸鱼人完成签到,获得积分10
9秒前
积极的白亦完成签到,获得积分10
10秒前
159完成签到 ,获得积分10
11秒前
uuuu发布了新的文献求助10
11秒前
Akim应助旭宝儿采纳,获得10
11秒前
WW发布了新的文献求助10
12秒前
13秒前
14秒前
李健的小迷弟应助欧阳采纳,获得10
14秒前
大布丁完成签到,获得积分10
14秒前
17秒前
秋云完成签到 ,获得积分10
18秒前
丁丁完成签到 ,获得积分10
19秒前
索多倍发布了新的文献求助10
19秒前
zhj发布了新的文献求助10
20秒前
20秒前
咖喱鸡发布了新的文献求助10
20秒前
li完成签到,获得积分10
20秒前
wang5945发布了新的文献求助10
20秒前
炒面完成签到,获得积分10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
一一应助科研通管家采纳,获得20
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023