Modeling and simulation of approaching behaviors to signalized intersections based on risk quantification

加速度 透视图(图形) 计算机科学 弹道 蒙特卡罗方法 模拟 概率分布 统计 数学 人工智能 天文 经典力学 物理
作者
Jun Hua,Guangquan Lu,Henry X. Liu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:142: 103773-103773
标识
DOI:10.1016/j.trc.2022.103773
摘要

• A risk field model independent on yellow duration is proposed to quantify the risk constraints of traffic lights on vehicle movement. • A driving behavior model framework is established to explain the approaching behaviors to signalized intersections from the perspective of human behavioral mechanism. • By considering drivers’ desired risks, the probability of passing the stop line during yellow period is obtained by simulation and compared with that calculated by existing models. • Considerations regarding the superiority of modeling based on human behavioral mechanisms compared to data-driven modeling are presented. The stop/go decisions made by drivers who are approaching signalized intersections during yellow period will affect the safety and efficiency of intersections. Existing research mostly modeled drivers’ decision-making behaviors using real-world driving data, while these datasets were collected in different traffic flows and road environments, and it is difficult to develop models suitable for different intersections. Aiming at explaining the approaching behaviors to signalized intersections from the perspective of human behavioral mechanism, this study establishes a driving behavior model framework, including a risk field model of dynamic traffic control elements independent on yellow duration, and a trajectory planning model constructed according to the risk homeostasis theory and preview-follower theory. Probabilities of passing the stop line during yellow period and the distribution of acceleration and deceleration rates when passing are obtained in the simulation by the Monte Carlo method. Results show the validity of the proposed model and its applicability to drivers with different desired risks. Compared to the proposed model, drivers are more inclined to use smaller acceleration rates or greater deceleration rates when entering intersections in observed cases. The intervention of reaction time may decrease the probabilities of passing. This study is an indispensable supplement to our previous study, contributing a unified model based on risk quantification to comprehensively describe the risk of the traffic environment, and is an attempt to promote the development of driving behavior models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
钟是一梦完成签到,获得积分10
1秒前
1秒前
wanci应助Ll采纳,获得10
1秒前
2秒前
2秒前
孟柠柠发布了新的文献求助10
2秒前
青阳完成签到,获得积分10
3秒前
科研狗发布了新的文献求助20
4秒前
5秒前
5秒前
jarenthar完成签到 ,获得积分10
5秒前
5秒前
丘比特应助hata采纳,获得10
5秒前
顾矜应助lszhw采纳,获得10
6秒前
lqq完成签到 ,获得积分10
6秒前
6秒前
共享精神应助拟拟采纳,获得10
6秒前
6秒前
lhy12345完成签到,获得积分10
6秒前
非常可爱发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
8秒前
文艺的初蓝完成签到 ,获得积分10
8秒前
TiAmo发布了新的文献求助10
8秒前
刘十三完成签到,获得积分10
8秒前
8秒前
犹豫忆南完成签到,获得积分10
9秒前
科研通AI5应助kingwhitewing采纳,获得10
10秒前
10秒前
mm关注了科研通微信公众号
10秒前
xieyuanxing发布了新的文献求助10
10秒前
10秒前
左然然完成签到,获得积分10
10秒前
10秒前
人福药业完成签到,获得积分10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740