Modeling and simulation of approaching behaviors to signalized intersections based on risk quantification

加速度 透视图(图形) 计算机科学 弹道 蒙特卡罗方法 模拟 概率分布 统计 数学 人工智能 天文 经典力学 物理
作者
Jun Hua,Guangquan Lu,Henry X. Liu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:142: 103773-103773
标识
DOI:10.1016/j.trc.2022.103773
摘要

• A risk field model independent on yellow duration is proposed to quantify the risk constraints of traffic lights on vehicle movement. • A driving behavior model framework is established to explain the approaching behaviors to signalized intersections from the perspective of human behavioral mechanism. • By considering drivers’ desired risks, the probability of passing the stop line during yellow period is obtained by simulation and compared with that calculated by existing models. • Considerations regarding the superiority of modeling based on human behavioral mechanisms compared to data-driven modeling are presented. The stop/go decisions made by drivers who are approaching signalized intersections during yellow period will affect the safety and efficiency of intersections. Existing research mostly modeled drivers’ decision-making behaviors using real-world driving data, while these datasets were collected in different traffic flows and road environments, and it is difficult to develop models suitable for different intersections. Aiming at explaining the approaching behaviors to signalized intersections from the perspective of human behavioral mechanism, this study establishes a driving behavior model framework, including a risk field model of dynamic traffic control elements independent on yellow duration, and a trajectory planning model constructed according to the risk homeostasis theory and preview-follower theory. Probabilities of passing the stop line during yellow period and the distribution of acceleration and deceleration rates when passing are obtained in the simulation by the Monte Carlo method. Results show the validity of the proposed model and its applicability to drivers with different desired risks. Compared to the proposed model, drivers are more inclined to use smaller acceleration rates or greater deceleration rates when entering intersections in observed cases. The intervention of reaction time may decrease the probabilities of passing. This study is an indispensable supplement to our previous study, contributing a unified model based on risk quantification to comprehensively describe the risk of the traffic environment, and is an attempt to promote the development of driving behavior models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯应助王之争霸采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
海南发布了新的文献求助10
2秒前
晨晨发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
缓慢尔岚发布了新的文献求助10
4秒前
善良随阴完成签到,获得积分10
4秒前
4秒前
4秒前
奶白的雪子完成签到,获得积分10
4秒前
星辰大海应助阿依咕噜采纳,获得10
6秒前
香蕉觅云应助DG采纳,获得10
6秒前
睡觉了完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Y_Y完成签到,获得积分10
7秒前
zorro3574发布了新的文献求助10
7秒前
7秒前
7秒前
嘿嘿完成签到,获得积分10
8秒前
renxin发布了新的文献求助10
8秒前
9秒前
10秒前
内向孤菱发布了新的文献求助30
10秒前
10秒前
可可布朗尼完成签到,获得积分10
11秒前
思源应助自信笑槐采纳,获得10
12秒前
13秒前
斑比发布了新的文献求助10
14秒前
JUN发布了新的文献求助10
14秒前
15秒前
bkagyin应助澄桦采纳,获得10
15秒前
天真似狮发布了新的文献求助10
17秒前
18秒前
19秒前
科研通AI6应助厚朴采纳,获得10
19秒前
lzp完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131