Exploring the influence of porosity and thickness on lithium-ion battery electrodes using an image-based model

电极 多孔性 电池(电) 材料科学 离子 锂(药物) 锂离子电池 图像(数学) 化学工程 计算机科学 复合材料 化学 人工智能 工程类 物理 热力学 心理学 物理化学 功率(物理) 精神科 有机化学
作者
Adam M. Boyce,Xuekun Lu,Dan J. L. Brett,Paul R. Shearing
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:542: 231779-231779 被引量:26
标识
DOI:10.1016/j.jpowsour.2022.231779
摘要

There is a growing need for lithium-ion batteries that possess increased energy storage capabilities, with a simultaneous requirement for fast charging and improved rate performance. Thick electrodes provide proportionately more active material and thus better storage capabilities, while having the unavoidable characteristic of an increased diffusion length that adversely affects the high rate performance of an electrode. Here, the workflow of advanced X-ray nano-computed tomography (CT) imaging, morphological image processing techniques, and a coupled electrochemical model is established. This tool facilitates the digital alteration of realistic electrode microstructures in a rational manner and permits studies such as the one presented in this work where an extensive parametric study is carried out and assesses the influence of thickness, porosity and discharge rate on electrode performance under the theme of heterogeneity, a key advantage of image-based analysis. In broad terms, the model shows high levels of heterogeneity in lithium, lithium-ion, and current density distributions across the electrode that gives rise to the significant and inextricable link between thickness, porosity and discharge rate. The modelling methodology presented in this work provides a foundation for the design of novel thick battery electrodes, and an example of such a design is presented here. • X-ray image-based model of thick battery electrode microstructures. • Image processing techniques allow analysis and design of realistic microstructures. • Parametric study illustrates limitations arising from porosity and thickness. • Detailed insight of electrode heterogeneities due to sluggish species transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一衣发布了新的文献求助20
1秒前
可爱的函函应助药学牛马采纳,获得10
1秒前
XM发布了新的文献求助10
1秒前
专注之双完成签到,获得积分10
2秒前
SciGPT应助十一采纳,获得10
2秒前
2秒前
A1234完成签到,获得积分10
3秒前
刘铭晨发布了新的文献求助10
4秒前
孙冉冉完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
大模型应助hhzz采纳,获得10
9秒前
一只智慧喵完成签到,获得积分10
9秒前
科目三应助Fundamental采纳,获得10
10秒前
10秒前
miumiuka发布了新的文献求助10
11秒前
greenPASS666发布了新的文献求助10
12秒前
xuanxuan发布了新的文献求助10
12秒前
zfy发布了新的文献求助10
14秒前
14秒前
14秒前
Maor完成签到,获得积分10
14秒前
白菜发布了新的文献求助10
15秒前
15秒前
16秒前
妮妮完成签到 ,获得积分10
18秒前
18秒前
傲娇的凡旋应助spurs17采纳,获得10
18秒前
长情若魔完成签到,获得积分10
20秒前
XM完成签到,获得积分10
20秒前
20秒前
LQW发布了新的文献求助30
20秒前
大个应助Rrr采纳,获得10
20秒前
21秒前
22秒前
22秒前
24秒前
zfy完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808