催化作用
碳纤维
材料科学
热解
碳纳米管
石墨烯
纳米技术
化学工程
无机化学
化学
复合材料
工程类
有机化学
复合数
作者
Woo Yeong Noh,Jinhong Mun,Yeongdae Lee,Eun Mi Kim,Young Kyeong Kim,Kwang Young Kim,Hu Young Jeong,Jong‐Hoon Lee,Hyun‐Kon Song,Geunsik Lee,Jae Sung Lee
标识
DOI:10.1021/acscatal.2c00697
摘要
A powerful synthetic protocol based on a molecularly engineered anchoring carbon platform (ACP) is reported to stabilize concentrated edge-hosted single-atom catalytic sites of M–N (M = Fe, Co, Ni, Cu) on carbon supports. Polymerization with l-cysteine as an additional organic precursor produces an ACP sheath around the carbon nanotube (CNT)–graphene (GR) hybrid support made of a small domain size with abundant edge sites and doped with sulfur. A few-minute-long microwave pyrolysis anchors strongly the single-atomic M–N moiety on the ACP while suppressing its agglomeration during the high-temperature synthesis and makes the ACP highly graphitized. As a typical example, the edge-hosted single-atomic catalytic sites in Fe–N/S-CNT–GR provide superior pH-independent oxygen reduction reaction (ORR) activity to previously reported Fe–N–C catalysts and commercial Pt/C while demonstrating oxygen evolution reaction (OER) activity in basic conditions similar to known state-of-the-art catalysts. In particular, the Fe–N/S-CNT–GR catalyst is much more stable than commercial Pt/C and Ir/C catalysts during ORR and OER in both base and acid solutions. Inferior stability is a common problem of this type of single-atom heterogeneous catalyst (SAC). An aqueous Zn–air battery with our Fe–N/S-CNT–GR catalyst operates as effectively as the device with the commercial Pt/C–Ir/C catalysts. We believe that our protocol based on the molecularly engineered ACP and microwave pyrolysis can provide a new concept to synthesize a new generation of durable SACs, which could have broad applications in electrochemical energy conversion and storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI