Online Personalized Assortment Optimization with High-Dimensional Customer Contextual Data

计算机科学 后悔 可扩展性 集合(抽象数据类型) 最优化问题 相关性(法律) 维数之咒 水准点(测量) 数学优化 数据挖掘 机器学习 算法 数据库 数学 大地测量学 政治学 法学 程序设计语言 地理
作者
Sentao Miao,Xiuli Chao
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2741-2760 被引量:15
标识
DOI:10.1287/msom.2022.1128
摘要

Problem definition: Consider an online personalized assortment optimization problem in which customers arrive sequentially and make their decisions (e.g., click an ad, purchase a product) following the multinomial logit choice model with unknown parameters. Utilizing a customer’s personal information that is high-dimensional, the firm selects an assortment tailored for each individual customer’s preference. Academic/practical relevance: High dimensionality of a customer’s contextual information is prevalent in real applications, and it creates tremendous computational challenge in online personalized optimization. Methodology: In this paper, an efficient learning algorithm is developed to tackle the computational complexity issue while maintaining satisfactory performance. The algorithm first applies a random projection for dimension reduction and incorporates an online convex optimization procedure for parameter estimation, thus overcoming the issue of linearly increasing computational requirement as data accumulates. Then, it integrates the upper confidence bound method to balance the exploration and revenue exploitation. Results: The theoretical performance of the algorithm in terms of regret is derived under some plausible sparsity assumption on personal information that is observed in real data, and numerical experiments using both synthetic data and a real data set from Yahoo! show that the algorithm performs very well, having scalability and significant advantage in computational time compared with benchmark methods. Managerial implications: Our findings suggest that practitioners should process high-dimensional sparse customer data with an appropriate feature engineering technique, such as random projection (instead of abandoning the sparse portion) to maximize the effectiveness of online optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安寒完成签到,获得积分10
刚刚
钉钉发布了新的文献求助50
刚刚
Connie完成签到,获得积分10
1秒前
1秒前
善学以致用应助方子怡采纳,获得10
2秒前
2秒前
2秒前
GuoSiqi72应助lmr采纳,获得10
2秒前
wanci应助李建行采纳,获得10
2秒前
奋斗思柔发布了新的文献求助10
3秒前
慧子朱完成签到,获得积分20
3秒前
3秒前
情怀应助FF采纳,获得10
3秒前
3秒前
秀丽绿真发布了新的文献求助10
4秒前
4秒前
mia完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
bkagyin应助微笑的老五采纳,获得10
8秒前
打打应助Y.J采纳,获得10
8秒前
权_888发布了新的文献求助10
8秒前
LIU发布了新的文献求助20
8秒前
希望天下0贩的0应助zrz采纳,获得10
8秒前
可爱的函函应助陈峰琦采纳,获得10
8秒前
高洪杨完成签到,获得积分10
8秒前
猇会不会发布了新的文献求助10
8秒前
所所应助浩洁采纳,获得10
8秒前
9秒前
10秒前
一个酸葡萄干完成签到,获得积分10
11秒前
风中晓霜完成签到,获得积分10
11秒前
12秒前
Owen应助虚心的靖仇采纳,获得10
12秒前
2021完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556