Online Personalized Assortment Optimization with High-Dimensional Customer Contextual Data

计算机科学 后悔 可扩展性 集合(抽象数据类型) 最优化问题 相关性(法律) 维数之咒 水准点(测量) 数学优化 数据挖掘 机器学习 算法 数据库 数学 大地测量学 政治学 法学 程序设计语言 地理
作者
Sentao Miao,Xiuli Chao
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2741-2760 被引量:15
标识
DOI:10.1287/msom.2022.1128
摘要

Problem definition: Consider an online personalized assortment optimization problem in which customers arrive sequentially and make their decisions (e.g., click an ad, purchase a product) following the multinomial logit choice model with unknown parameters. Utilizing a customer’s personal information that is high-dimensional, the firm selects an assortment tailored for each individual customer’s preference. Academic/practical relevance: High dimensionality of a customer’s contextual information is prevalent in real applications, and it creates tremendous computational challenge in online personalized optimization. Methodology: In this paper, an efficient learning algorithm is developed to tackle the computational complexity issue while maintaining satisfactory performance. The algorithm first applies a random projection for dimension reduction and incorporates an online convex optimization procedure for parameter estimation, thus overcoming the issue of linearly increasing computational requirement as data accumulates. Then, it integrates the upper confidence bound method to balance the exploration and revenue exploitation. Results: The theoretical performance of the algorithm in terms of regret is derived under some plausible sparsity assumption on personal information that is observed in real data, and numerical experiments using both synthetic data and a real data set from Yahoo! show that the algorithm performs very well, having scalability and significant advantage in computational time compared with benchmark methods. Managerial implications: Our findings suggest that practitioners should process high-dimensional sparse customer data with an appropriate feature engineering technique, such as random projection (instead of abandoning the sparse portion) to maximize the effectiveness of online optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
揽月完成签到,获得积分10
1秒前
核桃发布了新的文献求助10
2秒前
CNYDNZB发布了新的文献求助30
2秒前
asdfzxcv应助小冯采纳,获得10
2秒前
2秒前
SJJ应助RYS采纳,获得30
2秒前
善学以致用应助龙1采纳,获得10
2秒前
3秒前
3秒前
Earrr完成签到,获得积分10
4秒前
俊逸寻菡完成签到,获得积分10
4秒前
传奇3应助cherish采纳,获得10
5秒前
wanci应助拾忆采纳,获得10
5秒前
安利完成签到,获得积分10
5秒前
CSX完成签到,获得积分10
5秒前
forever发布了新的文献求助10
6秒前
6秒前
6秒前
asdfzxcv应助六尺巷采纳,获得10
6秒前
XLC发布了新的文献求助10
7秒前
7秒前
深情安青应助WQ采纳,获得10
7秒前
7秒前
Gyz发布了新的文献求助10
8秒前
9秒前
烟花应助lindoudou采纳,获得10
10秒前
纯真怜梦发布了新的文献求助10
10秒前
QQ发布了新的文献求助10
10秒前
两张发布了新的文献求助10
11秒前
ddd666完成签到,获得积分10
12秒前
核桃发布了新的文献求助10
13秒前
活泼的牛青完成签到 ,获得积分10
14秒前
14秒前
星辰大海应助####采纳,获得10
15秒前
15秒前
16秒前
沙茶酱菜卷完成签到 ,获得积分10
16秒前
汉堡包应助两张采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559