Online Personalized Assortment Optimization with High-Dimensional Customer Contextual Data

计算机科学 后悔 可扩展性 集合(抽象数据类型) 最优化问题 相关性(法律) 维数之咒 水准点(测量) 数学优化 数据挖掘 机器学习 算法 数据库 数学 大地测量学 政治学 法学 程序设计语言 地理
作者
Sentao Miao,Xiuli Chao
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (5): 2741-2760 被引量:15
标识
DOI:10.1287/msom.2022.1128
摘要

Problem definition: Consider an online personalized assortment optimization problem in which customers arrive sequentially and make their decisions (e.g., click an ad, purchase a product) following the multinomial logit choice model with unknown parameters. Utilizing a customer’s personal information that is high-dimensional, the firm selects an assortment tailored for each individual customer’s preference. Academic/practical relevance: High dimensionality of a customer’s contextual information is prevalent in real applications, and it creates tremendous computational challenge in online personalized optimization. Methodology: In this paper, an efficient learning algorithm is developed to tackle the computational complexity issue while maintaining satisfactory performance. The algorithm first applies a random projection for dimension reduction and incorporates an online convex optimization procedure for parameter estimation, thus overcoming the issue of linearly increasing computational requirement as data accumulates. Then, it integrates the upper confidence bound method to balance the exploration and revenue exploitation. Results: The theoretical performance of the algorithm in terms of regret is derived under some plausible sparsity assumption on personal information that is observed in real data, and numerical experiments using both synthetic data and a real data set from Yahoo! show that the algorithm performs very well, having scalability and significant advantage in computational time compared with benchmark methods. Managerial implications: Our findings suggest that practitioners should process high-dimensional sparse customer data with an appropriate feature engineering technique, such as random projection (instead of abandoning the sparse portion) to maximize the effectiveness of online optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈夕发布了新的文献求助10
刚刚
1秒前
1秒前
dangdanghong完成签到,获得积分20
1秒前
王小赵完成签到,获得积分10
2秒前
3秒前
帅气鹭洋发布了新的文献求助10
5秒前
ymj完成签到,获得积分10
6秒前
夕荀发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
CipherSage应助自由雨莲采纳,获得10
8秒前
SciGPT应助詹芷珊采纳,获得10
9秒前
11秒前
Owen应助大方小白采纳,获得10
11秒前
12秒前
王手发布了新的文献求助10
12秒前
lena完成签到,获得积分20
12秒前
茹茹发布了新的文献求助10
13秒前
13秒前
科研通AI6应助欢呼的飞荷采纳,获得10
13秒前
缓慢思枫完成签到,获得积分10
14秒前
无辜的蜗牛完成签到 ,获得积分10
14秒前
克西发布了新的文献求助20
16秒前
追寻荔枝完成签到,获得积分20
17秒前
18秒前
18秒前
陈xx完成签到,获得积分10
19秒前
20秒前
Ryubot完成签到,获得积分10
22秒前
22秒前
搞怪的易槐完成签到,获得积分10
22秒前
追寻荔枝发布了新的文献求助10
22秒前
恩柳画桥发布了新的文献求助10
22秒前
小周发布了新的文献求助10
25秒前
25秒前
哈哈哈完成签到,获得积分20
26秒前
Jasper应助xxx采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370