Online Personalized Assortment Optimization with High-Dimensional Customer Contextual Data

计算机科学 后悔 可扩展性 集合(抽象数据类型) 最优化问题 相关性(法律) 维数之咒 数学优化 数据挖掘 机器学习
作者
Sentao Miao,Xiuli Chao
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2022.1128
摘要

Problem definition: Consider an online personalized assortment optimization problem in which customers arrive sequentially and make their decisions (e.g., click an ad, purchase a product) following the multinomial logit choice model with unknown parameters. Utilizing a customer’s personal information that is high-dimensional, the firm selects an assortment tailored for each individual customer’s preference. Academic/practical relevance: High dimensionality of a customer’s contextual information is prevalent in real applications, and it creates tremendous computational challenge in online personalized optimization. Methodology: In this paper, an efficient learning algorithm is developed to tackle the computational complexity issue while maintaining satisfactory performance. The algorithm first applies a random projection for dimension reduction and incorporates an online convex optimization procedure for parameter estimation, thus overcoming the issue of linearly increasing computational requirement as data accumulates. Then, it integrates the upper confidence bound method to balance the exploration and revenue exploitation. Results: The theoretical performance of the algorithm in terms of regret is derived under some plausible sparsity assumption on personal information that is observed in real data, and numerical experiments using both synthetic data and a real data set from Yahoo! show that the algorithm performs very well, having scalability and significant advantage in computational time compared with benchmark methods. Managerial implications: Our findings suggest that practitioners should process high-dimensional sparse customer data with an appropriate feature engineering technique, such as random projection (instead of abandoning the sparse portion) to maximize the effectiveness of online optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangz发布了新的文献求助10
1秒前
诚心的雅容完成签到,获得积分20
1秒前
酷波er应助loyalll采纳,获得10
1秒前
2秒前
小二郎应助敬老院N号采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
赘婿应助冯娇娇采纳,获得10
4秒前
一一完成签到 ,获得积分10
4秒前
linxm7发布了新的文献求助10
4秒前
4秒前
陈二萌完成签到,获得积分10
4秒前
完美世界应助坦率初柔采纳,获得10
5秒前
wanci应助郁金香采纳,获得10
5秒前
金蕊发布了新的文献求助10
5秒前
橘子完成签到,获得积分10
5秒前
6秒前
6秒前
111完成签到,获得积分20
6秒前
机智雪糕完成签到,获得积分10
7秒前
小蘑菇应助bobo采纳,获得10
8秒前
9秒前
9秒前
quan发布了新的文献求助10
9秒前
10秒前
Crystal发布了新的文献求助10
10秒前
香蕉觅云应助yangz采纳,获得10
11秒前
lingod应助ZZH采纳,获得10
11秒前
求助大神们应助haha采纳,获得20
11秒前
DarylK发布了新的文献求助10
11秒前
12秒前
生动的如花完成签到,获得积分20
12秒前
YY发布了新的文献求助20
13秒前
13秒前
共享精神应助萍萍子采纳,获得10
13秒前
14秒前
14秒前
大个应助梧桐采纳,获得10
14秒前
勾勾西发布了新的文献求助10
14秒前
14秒前
椿上春树发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788