Potential Difference-Modulated Synthesis of Self-Standing Covalent Organic Framework Membranes at Liquid/Liquid Interfaces

化学 化学工程 单体 制作 溶解 循环伏安法 共价有机骨架 电解质 浓差极化 共价键 纳米技术 有机化学 电化学 材料科学 电极 聚合物 工程类 病理 物理化学 医学 生物化学 替代医学
作者
Rongjie Yang,Shanshan Liu,Qi Sun,Qiaobo Liao,Kai Xi,Bin Su
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (26): 11778-11787 被引量:29
标识
DOI:10.1021/jacs.2c03864
摘要

Covalent organic framework (COF) membranes with tailored functionalities hold great promise in diverse applications, but the key to realize their full advantages of highly ordered pore structures is the development of membrane fabrication approaches. In this work, we report a potential difference-modulated biphasic strategy to fabricate large-area, self-standing COF membranes under ambient conditions. The fabrication was conducted at the polarized water/1,2-dichloroethane (water/DCE) interface, where HCl was dissolved in water as a catalyst and monomers (both amine and aldehyde) were added to DCE. The external polarization of the water/DCE interface by cyclic voltammetry can continuously pump H+ from water to DCE to boost the Schiff base reaction of monomers and the growth of COF membranes. Moreover, the growth process can be real-time-monitored by interfacial double-layer capacitance measurement, and the permeability of COF membranes can be in situ-examined by heterogeneous ion transfer voltammetry. Given that the potential difference across the water/DCE interface can be also facilely modulated by dissolving proper electrolyte ions in two phases, the fabrication of large-area COF membranes is made possible in beakers. Using this strategy and different monomers, three types of centimeter-scale, free-standing COF membranes with tunable pore size and surface functionality were prepared, and their defect-free structure was proved by the molecular permeance and ultrafiltration test. We believe that this biphasic strategy offers a controllable and scalable way to fabricate COF membranes and sheds light on development of novel self-supporting membranes with unique functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻白柏完成签到,获得积分10
刚刚
刚刚
麦满分完成签到,获得积分10
1秒前
长度2到发布了新的文献求助10
1秒前
Alicia完成签到,获得积分10
2秒前
西瓜大虫完成签到,获得积分10
2秒前
害羞聋五发布了新的文献求助10
3秒前
prosperp完成签到,获得积分0
3秒前
Hongsong完成签到,获得积分20
3秒前
prosperp应助背侧丘脑采纳,获得10
4秒前
好好发布了新的文献求助10
4秒前
gaos发布了新的文献求助10
4秒前
einuo发布了新的文献求助10
5秒前
001完成签到,获得积分20
5秒前
李健应助阔达萧采纳,获得10
5秒前
陆离发布了新的文献求助10
5秒前
6秒前
66应助雪白红紫采纳,获得10
6秒前
英俊的铭应助东郭南松采纳,获得10
6秒前
YANG完成签到 ,获得积分10
7秒前
冷酷哈密瓜完成签到,获得积分10
8秒前
岁月流年完成签到,获得积分10
8秒前
8秒前
9秒前
8个老登发布了新的文献求助10
10秒前
douzi完成签到,获得积分10
10秒前
Li完成签到,获得积分10
10秒前
Macaco完成签到,获得积分10
11秒前
研友_8Yo3dn完成签到,获得积分10
11秒前
lilac完成签到,获得积分10
11秒前
misalia发布了新的文献求助10
11秒前
judy发布了新的文献求助10
11秒前
12秒前
李健的小迷弟应助称心铭采纳,获得30
12秒前
12秒前
adfadf发布了新的文献求助10
12秒前
CC完成签到,获得积分10
12秒前
1234567890完成签到,获得积分10
12秒前
彩色夏波发布了新的文献求助10
13秒前
劲秉应助跳舞的俏皮采纳,获得20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678