计算机科学
视频质量
主观视频质量
卷积神经网络
质量(理念)
公制(单位)
人工智能
平均意见得分
质量评定
质量得分
感知
图像质量
深度学习
人工神经网络
机器学习
观察员(物理)
模式识别(心理学)
计算机视觉
图像(数学)
哲学
运营管理
物理
认识论
量子力学
神经科学
生物
经济
作者
Viacheslav Voronin,Alexander A. Zelensky,Marina Zhdanova,Evgeny A. Semenishchev,Vladimir Frantc,Aleksey Siryakov
摘要
To establish stable video operations and services while maintaining high quality of experience, perceptual video quality assessment becomes an essential research topic in video technology. The goal of image quality assessment is to predict the perceptual quality for improving imaging systems' performance. The paper presents a novel visual quality metric for video quality assessment. To address this problem, we study the of neural networks through the robust optimization. High degree of correlation with subjective estimations of quality is due to using of a convolutional neural network trained on a large amount of pairs video sequence-subjective quality score. We demonstrate how our predicted no-reference quality metric correlates with qualitative opinion in a human observer study. Results are shown on the MCL-V dataset with comparison existing approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI