A non-invasive model based on the virtual portal pressure gradient to predict the first variceal hemorrhage in cirrhotic patients

列线图 医学 单变量 内科学 肝病学 肝硬化 队列 多元统计 比例危险模型 接收机工作特性 多元分析 曲线下面积 门静脉压 外科 胃肠病学 门脉高压 统计 数学
作者
Shuo Zhang,Weikang Song,Bo Yang,Haoyu Jia,Shuai Chen,Jing Li,Yang Chen
出处
期刊:Hepatology International [Springer Nature]
卷期号:16 (4): 926-935 被引量:2
标识
DOI:10.1007/s12072-022-10344-5
摘要

Background and aimsThis study aimed to establish a non-invasive model based on the virtual portal pressure gradient (vPPG) to predict the first variceal hemorrhage (VH) in patients with cirrhosis.MethodsThis single-center study prospectively enrolled cirrhotic patients as the training and validation cohorts during different time periods. The PPG-detection software (PPGS 1.0) was used to perform vPPG calculation, which involves 2 steps including three-dimensional (3D) reconstruction of portal vein tree and subsequent application of computational fluid dynamics. All patients were given standard primary prophylaxis against VH and followed up for 2 years. Data from the training cohort were assessed using univariate and multivariate Cox regression and Kaplan–Meier analyses, by which a nomogram with its dynamic form was developed to estimate the probability of VH.ResultsIn the training cohort (n = 128), 37 (28.9%) experienced VH during 2-year follow-up. Four variables including vPPG ≥ 10.5 mmHg (p < 0.001), PLT < 56 × 109/L (p = 0.048), albumin < 32 g/L (p < 0.001) and INR ≥ 1.2 (p = 0.022) were identified as independent risk factors of VH, among which vPPG showed the best diagnostic performance (AUC 0.875). Subsequently, these predictors were incorporated into the nomogram, of which C-indexes were 0.891 and 0.926 for the training and validation cohorts, respectively. Calibration curves demonstrated a great calibration ability of the model. At the threshold probabilities of 0.1–0.6 (1 year) and 0.1–1.0 (2 years), this nomogram could offer more net benefits in decision curve analysis.ConclusionsThe vPPG-based nomogram could be used for risk stratification of the first VH in patients with cirrhosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助OvO采纳,获得10
1秒前
迷糊发布了新的文献求助30
2秒前
LY发布了新的文献求助10
3秒前
zzz完成签到,获得积分10
3秒前
KimJongUn完成签到,获得积分10
3秒前
5秒前
5秒前
zy完成签到,获得积分10
6秒前
开心果子发布了新的文献求助10
6秒前
云痴子完成签到,获得积分10
7秒前
SciGPT应助粥粥采纳,获得10
7秒前
7秒前
7秒前
8秒前
苏源完成签到,获得积分10
8秒前
wu关闭了wu文献求助
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
Shawn完成签到,获得积分10
11秒前
yltstt完成签到,获得积分10
12秒前
李小新发布了新的文献求助10
12秒前
成梦发布了新的文献求助10
13秒前
乐乐应助xuex1采纳,获得10
13秒前
蜂鸟5156发布了新的文献求助10
13秒前
李爱国应助VDC采纳,获得10
14秒前
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
ns完成签到,获得积分10
15秒前
细腻晓露发布了新的文献求助10
15秒前
李本来发布了新的文献求助10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808