克拉斯
肺癌
癌症研究
癌症
生物
突变
污渍
分子生物学
化学
医学
病理
结直肠癌
基因
遗传学
作者
Han Yu-min,Trevor Lee,Yongfeng He,Renuka Raman,Adriana Irizarry,María Laura Martin,Giuseppe Giaccone
标识
DOI:10.1016/j.ejca.2022.04.025
摘要
Background Lung cancer is the leading cause of global cancer-related mortality. Although immune checkpoint therapy has achieved remarkable results in lung cancer, EGFR-mutant or ALK-positive non-smallcell lung cancer patients show limited benefit. Besides the low tumor mutational burden, PD-L1 expression and CD8+ tumor-infiltrating T cells, upregulation of CD73/adenosine pathway also contributes to the immune-inert microenvironment of EGFR-mutant NSCLC. However, the detailed mechanism underlying the regulation of CD73 is unclear. Methods TCGA data was used to analyze the CD73 expression in cancer patients. Western blotting, qPCR, and ChIP-PCR were performed in multiple NSCLC cancer cell lines and patient derived organoids were used to explore the regulation of CD73 expression using western blotting. Results CD73 expression was highly expressed in multiple cancer types. Pharmacological or genetic inhibition of EGFR, MEK, KRAS, or ALK dramatically reduced the CD73 mRNA and protein expression in NSCLC cancer cells and patient-derived organoids with EGFR mutation, KRAS mutation or ALK-rearrangement. C-Jun overexpression-induced CD73 mRNA and protein expression. ChIP assay showed that c-Jun bind to CD73 genomic regions. Conclusions Higher CD73 expression in NSCLC cancer cells and patient-derived organoids with EGFR mutation, KRAS mutation or ALK-rearrangement. Mechanistically, CD73 is regulated by ERK-Jun pathway, wherein c-Jun regulates CD73 expression via binding to CD73 genomic regions.
科研通智能强力驱动
Strongly Powered by AbleSci AI