亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models

统计 样本量测定 数学 均方误差 分离(统计) 样品(材料) 项目反应理论 I类和II类错误 心理测量学 化学 色谱法
作者
Sedat Şen,Allan S. Cohen
出处
期刊:Educational and Psychological Measurement [SAGE]
卷期号:83 (3): 520-555 被引量:3
标识
DOI:10.1177/00131644221094325
摘要

The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated factors in the simulation included the sample size (11 different sample sizes from 100 to 5000), test length (10, 30, and 50), number of classes (2 and 3), the degree of latent class separation (normal/no separation, small, medium, and large), and class sizes (equal vs. nonequal). Effects were assessed using root mean square error (RMSE) and classification accuracy percentage computed between true parameters and estimated parameters. The results of this simulation study showed that more precise estimates of item parameters were obtained with larger sample sizes and longer test lengths. Recovery of item parameters decreased as the number of classes increased with the decrease in sample size. Recovery of classification accuracy for the conditions with two-class solutions was also better than that of three-class solutions. Results of both item parameter estimates and classification accuracy differed by model type. More complex models and models with larger class separations produced less accurate results. The effect of the mixture proportions also differentially affected RMSE and classification accuracy results. Groups of equal size produced more precise item parameter estimates, but the reverse was the case for classification accuracy results. Results suggested that dichotomous mixture IRT models required more than 2,000 examinees to be able to obtain stable results as even shorter tests required such large sample sizes for more precise estimates. This number increased as the number of latent classes, the degree of separation, and model complexity increased.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观芸发布了新的文献求助10
9秒前
西瓜完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
58秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助高高元柏采纳,获得10
1分钟前
斯文败类应助seven采纳,获得10
1分钟前
顾子墨完成签到,获得积分10
1分钟前
plz94完成签到 ,获得积分10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
莫春莹完成签到 ,获得积分10
1分钟前
静静完成签到 ,获得积分10
2分钟前
KKKKKKKKKKKK发布了新的文献求助10
2分钟前
2分钟前
高高元柏发布了新的文献求助10
2分钟前
高高元柏完成签到,获得积分10
2分钟前
静_静完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
seven发布了新的文献求助10
3分钟前
伶俐的不尤完成签到,获得积分10
3分钟前
隐形曼青应助seven采纳,获得10
3分钟前
梦思遗落完成签到,获得积分10
3分钟前
JrPaleo101完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
所所应助栗先森采纳,获得10
5分钟前
hhuajw应助Echopotter采纳,获得10
5分钟前
5分钟前
栗先森发布了新的文献求助10
5分钟前
5分钟前
杨惠子发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706432
求助须知:如何正确求助?哪些是违规求助? 5173421
关于积分的说明 15246911
捐赠科研通 4859948
什么是DOI,文献DOI怎么找? 2608263
邀请新用户注册赠送积分活动 1559177
关于科研通互助平台的介绍 1516937