The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models

统计 样本量测定 数学 均方误差 分离(统计) 样品(材料) 项目反应理论 I类和II类错误 心理测量学 化学 色谱法
作者
Sedat Şen,Allan S. Cohen
出处
期刊:Educational and Psychological Measurement [SAGE Publishing]
卷期号:83 (3): 520-555 被引量:3
标识
DOI:10.1177/00131644221094325
摘要

The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated factors in the simulation included the sample size (11 different sample sizes from 100 to 5000), test length (10, 30, and 50), number of classes (2 and 3), the degree of latent class separation (normal/no separation, small, medium, and large), and class sizes (equal vs. nonequal). Effects were assessed using root mean square error (RMSE) and classification accuracy percentage computed between true parameters and estimated parameters. The results of this simulation study showed that more precise estimates of item parameters were obtained with larger sample sizes and longer test lengths. Recovery of item parameters decreased as the number of classes increased with the decrease in sample size. Recovery of classification accuracy for the conditions with two-class solutions was also better than that of three-class solutions. Results of both item parameter estimates and classification accuracy differed by model type. More complex models and models with larger class separations produced less accurate results. The effect of the mixture proportions also differentially affected RMSE and classification accuracy results. Groups of equal size produced more precise item parameter estimates, but the reverse was the case for classification accuracy results. Results suggested that dichotomous mixture IRT models required more than 2,000 examinees to be able to obtain stable results as even shorter tests required such large sample sizes for more precise estimates. This number increased as the number of latent classes, the degree of separation, and model complexity increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果发布了新的文献求助10
刚刚
andy_lee完成签到,获得积分10
刚刚
贪玩丸子完成签到 ,获得积分10
刚刚
阿拉斯加完成签到 ,获得积分10
刚刚
看不懂完成签到 ,获得积分10
刚刚
Warten995完成签到 ,获得积分10
刚刚
天天快乐应助鳗鱼丹琴采纳,获得30
1秒前
Ricewind完成签到,获得积分20
2秒前
2秒前
略晓薛完成签到 ,获得积分10
2秒前
聪明的书包完成签到 ,获得积分10
2秒前
中流击水完成签到,获得积分10
2秒前
饱满的翠阳完成签到 ,获得积分10
2秒前
细腻柜子发布了新的文献求助10
3秒前
在水一方应助grassroot采纳,获得10
3秒前
康舟发布了新的文献求助10
3秒前
爱洗澡的拖鞋完成签到 ,获得积分10
3秒前
roundround完成签到 ,获得积分10
3秒前
小思完成签到 ,获得积分10
3秒前
祖三问完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
leozhang完成签到,获得积分10
4秒前
坚强的广山应助学术疯子采纳,获得200
5秒前
xixixi完成签到 ,获得积分10
5秒前
腿腿完成签到 ,获得积分10
5秒前
选民很头疼完成签到,获得积分10
5秒前
MXX完成签到 ,获得积分10
5秒前
积极的雨完成签到 ,获得积分10
6秒前
跳跃豆芽完成签到 ,获得积分10
6秒前
jjb发布了新的文献求助10
6秒前
betyby完成签到 ,获得积分10
6秒前
Keven完成签到 ,获得积分10
6秒前
mang_er完成签到 ,获得积分10
6秒前
夜雨完成签到 ,获得积分10
6秒前
Ting完成签到 ,获得积分10
7秒前
小雨点完成签到 ,获得积分10
7秒前
张雨欣完成签到 ,获得积分10
7秒前
alice01987完成签到,获得积分10
8秒前
zzz完成签到,获得积分20
8秒前
炙热黄豆发布了新的文献求助10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662173
求助须知:如何正确求助?哪些是违规求助? 3223026
关于积分的说明 9749872
捐赠科研通 2932763
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727