亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Impact of Sample Size and Various Other Factors on Estimation of Dichotomous Mixture IRT Models

统计 样本量测定 数学 均方误差 分离(统计) 样品(材料) 项目反应理论 I类和II类错误 心理测量学 化学 色谱法
作者
Sedat Şen,Allan S. Cohen
出处
期刊:Educational and Psychological Measurement [SAGE]
卷期号:83 (3): 520-555 被引量:3
标识
DOI:10.1177/00131644221094325
摘要

The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated factors in the simulation included the sample size (11 different sample sizes from 100 to 5000), test length (10, 30, and 50), number of classes (2 and 3), the degree of latent class separation (normal/no separation, small, medium, and large), and class sizes (equal vs. nonequal). Effects were assessed using root mean square error (RMSE) and classification accuracy percentage computed between true parameters and estimated parameters. The results of this simulation study showed that more precise estimates of item parameters were obtained with larger sample sizes and longer test lengths. Recovery of item parameters decreased as the number of classes increased with the decrease in sample size. Recovery of classification accuracy for the conditions with two-class solutions was also better than that of three-class solutions. Results of both item parameter estimates and classification accuracy differed by model type. More complex models and models with larger class separations produced less accurate results. The effect of the mixture proportions also differentially affected RMSE and classification accuracy results. Groups of equal size produced more precise item parameter estimates, but the reverse was the case for classification accuracy results. Results suggested that dichotomous mixture IRT models required more than 2,000 examinees to be able to obtain stable results as even shorter tests required such large sample sizes for more precise estimates. This number increased as the number of latent classes, the degree of separation, and model complexity increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐发布了新的文献求助10
3秒前
wxq发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得20
17秒前
17秒前
烟花应助xxxhhh采纳,获得10
25秒前
stupidZ完成签到,获得积分10
26秒前
51秒前
靓丽的冰旋完成签到,获得积分10
53秒前
咸鱼lmye发布了新的文献求助10
56秒前
59秒前
cc发布了新的文献求助10
1分钟前
大个应助砖砖采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
雯雯完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
兼听则明完成签到,获得积分10
1分钟前
huenguyenvan完成签到,获得积分10
1分钟前
ukmy完成签到,获得积分10
1分钟前
ukmy发布了新的文献求助10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
bkagyin应助咸鱼lmye采纳,获得10
1分钟前
1分钟前
1分钟前
砖砖发布了新的文献求助10
1分钟前
Maggie完成签到,获得积分10
1分钟前
呆毛发布了新的文献求助10
1分钟前
春天的大树完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
intfrac应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463262
求助须知:如何正确求助?哪些是违规求助? 4568010
关于积分的说明 14312303
捐赠科研通 4493894
什么是DOI,文献DOI怎么找? 2461964
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426184