Primary hyperparathyroidism, a machine learning approach to identify multiglandular disease in patients with a single adenoma found at preoperative Sestamibi-SPECT/CT

原发性甲状旁腺功能亢进 医学 甲状旁腺功能亢进 甲状旁腺切除术 腺瘤 接收机工作特性 放射科 甲状旁腺激素 内科学 泌尿科
作者
Patricia Sandqvist,Anders Sundin,Inga‐Lena Nilsson,Per Grybäck,Alejandro Sánchez-Crespo
出处
期刊:European journal of endocrinology [Bioscientifica]
卷期号:187 (2): 257-263 被引量:8
标识
DOI:10.1530/eje-22-0206
摘要

Successful preoperative image localisation of all parathyroid adenomas (PTA) in patients with primary hyperparathyroidism (pHPT) and multiglandular disease (MGD) remains challenging. We investigate whether a machine learning classifier (MLC) could predict the presence of overlooked PTA at preoperative localisation with 99mTc-Sestamibi-SPECT/CT in MGD patients.This study is a retrospective study from a single tertiary referral hospital initially including 349 patients with biochemically confirmed pHPT and cured after surgical parathyroidectomy.A classification ensemble of decision trees with Bayesian hyperparameter optimisation and five-fold cross-validation was trained with six predictor variables: the preoperative plasma concentrations of parathyroid hormone, total calcium and thyroid-stimulating hormone, the serum concentration of ionised calcium, the 24-h urine calcium and the histopathological weight of the localised PTA at imaging. Two response classes were defined: patients with single-gland disease (SGD) correctly localised at imaging and MGD patients in whom only one PTA was localised on imaging. The data set was split into 70% for training and 30% for testing. The MLC was also tested on a subset of the original data based on CT image-derived PTA weights.The MLC achieved an overall accuracy at validation of 90% with an area under the cross-validation receiver operating characteristic curve of 0.9. On test data, the MLC reached a 72% true-positive prediction rate for MGD patients and a misclassification rate of 6% for SGD patients. Similar results were obtained in the testing set with image-derived PTA weight.Artificial intelligence can aid in identifying patients with MGD for whom 99mTc-Sestamibi-SPECT/CT failed to visualise all PTAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YaHe发布了新的文献求助10
刚刚
刚刚
小白白发布了新的文献求助10
1秒前
1秒前
二丙发布了新的文献求助10
1秒前
2秒前
3秒前
nanda完成签到,获得积分10
4秒前
5秒前
7秒前
jingjing发布了新的文献求助10
8秒前
彗子子发布了新的文献求助10
9秒前
10秒前
小蘑菇应助斯文起眸采纳,获得10
11秒前
亓大大发布了新的文献求助10
12秒前
嗨哈尼发布了新的文献求助10
14秒前
Vito完成签到,获得积分10
14秒前
14秒前
z12发布了新的文献求助10
17秒前
99giddens举报开心的万天求助涉嫌违规
18秒前
nnin完成签到 ,获得积分20
19秒前
19秒前
嗨哈尼完成签到,获得积分10
21秒前
随性随缘随命完成签到 ,获得积分10
22秒前
范米粒发布了新的文献求助10
22秒前
ZYG完成签到,获得积分10
23秒前
打打应助想发SCI采纳,获得10
23秒前
冷静芹菜完成签到 ,获得积分10
24秒前
情怀应助明天会下雨吗采纳,获得10
25秒前
饱满的念双完成签到 ,获得积分10
26秒前
JamesPei应助废柴采纳,获得10
27秒前
28秒前
31秒前
浅尝离白应助小巧日记本采纳,获得20
33秒前
安息香发布了新的文献求助10
34秒前
吾皇完成签到 ,获得积分10
35秒前
35秒前
郜易发布了新的文献求助10
37秒前
顺心醉蝶完成签到,获得积分10
37秒前
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146253
求助须知:如何正确求助?哪些是违规求助? 2797588
关于积分的说明 7824904
捐赠科研通 2453986
什么是DOI,文献DOI怎么找? 1305944
科研通“疑难数据库(出版商)”最低求助积分说明 627623
版权声明 601503