亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiobjective optimization of multisource heating system based on improving diversification and implementation

数学优化 多目标优化 离散化 多元化(营销策略) 最优化问题 计算机科学 嵌入 决策者 帕累托原理 数学 运筹学 人工智能 数学分析 业务 营销
作者
Xiangming Zhao,Jianxiang Guo,Maogang He
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:266: 115789-115789 被引量:7
标识
DOI:10.1016/j.enconman.2022.115789
摘要

The multiobjective optimization of the system usually focuses on the optimization of the objective functions while ignoring the influence of decision variables on the implementation of the solution. This paper proposes a new improved optimization method by embedding the decision variable diversification mechanism in the optimization process, adopting the discretization mechanism in the multisource complementary heating model, and improving the search space. The new improved optimization method and the original method have similar performance in obtaining the Pareto front, and the hypervolume of the two algorithms differs by only 1.37% on average. The standard deviations of the decision variables in the optimal solutions obtained by the improved algorithm are increased by 70%, and it has a higher diversity of solutions in the decision space. The equipment capacity obtained by the improved algorithm is discretized, and avoids equipment with lower capacity which is beneficial to construction. In this paper, the optimal implementation solution is obtained through the selection of the objective functions by the overall planners and the construction preference of the solution implementers. In this way, the overall planners' requirements for energy conservation, emission reduction and economy, as well as the solution implementers' choice of implementation solutions can be comprehensively considered. In addition, this paper also obtains another optimal solution for adopting the carbon pricing method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
10秒前
14秒前
jy发布了新的文献求助10
16秒前
嘻嘻哈哈完成签到,获得积分10
23秒前
31秒前
31秒前
31秒前
31秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
领导范儿应助Elen1987采纳,获得10
36秒前
37秒前
科研通AI6.1应助jy采纳,获得10
49秒前
50秒前
55秒前
Lucas应助KKLUV采纳,获得10
57秒前
1分钟前
jy发布了新的文献求助10
1分钟前
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
852应助zslg采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
zslg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615