Diabetic foot thermal image segmentation using Double Encoder-ResUnet (DE-ResUnet)

分割 RGB颜色模型 人工智能 计算机科学 图像分割 编码器 交叉口(航空) 计算机视觉 人口 脚(韵律) 糖尿病足 模式识别(心理学) 医学 地理 地图学 语言学 哲学 环境卫生 内分泌学 糖尿病 操作系统
作者
Doha Bouallal,Hassan Douzi,Rachid Harba
出处
期刊:Journal of Medical Engineering & Technology [Informa]
卷期号:46 (5): 378-392 被引量:9
标识
DOI:10.1080/03091902.2022.2077997
摘要

The use of thermography in the early diagnosis of Diabetic Foot (DF) has proven its effectiveness in identifying areas of the plantar foot that are susceptible to ulcer development. Segmentation of the foot sole is one of the most pertinent technical issues that must be performed with great precision. However, because of the inherent difficulties of foot thermal images, such as unclarity and the existence of ambiguities, segmentation approaches have not demonstrated sufficiently accurate and reliable results for clinical use. In this study, we aim to develop a fully automated, robust and accurate segmentation of the diabetic foot. To this end, we propose a deep neural network architecture adopting the encoder-decoder concept called Double Encoder-ResUnet (DE-ResUnet). This network combines the strengths of residual network and U-Net architecture. Moreover, it takes advantage of RGB (Red, Green, Blue) colour images and fuses thermal and colour information to improve segmentation accuracy. Our database consists of 398 pairs of thermal and RGB images. The population includes two groups. The first group of 54 healthy subjects. And a second group of 145 diabetic patients from the National Hospital Dos de Mayo in Peru. The dataset is splitted into 50% for training, 25% for validation and the last 25% is used for testing. This proposed model provided robust and accurate automatic segmentations of the DF and outperformed other state of the art methods with an average intersection over union (IoU) of 97%. In addition, it is able to accurately delineate the part of toes and heels which are high risk regions for ulceration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸蘑菇发布了新的文献求助10
1秒前
混沌完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
xg发布了新的文献求助10
3秒前
看看发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Annie完成签到,获得积分10
5秒前
5秒前
通~发布了新的文献求助30
6秒前
6秒前
雨雾发布了新的文献求助10
7秒前
daiyapeng完成签到,获得积分10
7秒前
ivy应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
36456657应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
36456657应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
9秒前
9秒前
赘婿应助科研通管家采纳,获得30
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794