亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 块(置换群论) 像素 发电机(电路理论) 卷积(计算机科学) 鉴别器 图像(数学) 人工神经网络 数学 物理 几何学 探测器 电信 功率(物理) 量子力学
作者
Haibin Jin,Yue Li,Jianfang Qi,Jianying Feng,Dong Tian,Weisong Mu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107055-107055 被引量:36
标识
DOI:10.1016/j.compag.2022.107055
摘要

Grape leaf disease seriously affects the yield and quality of grapes. Limited by actual conditions, collecting a large number of grape disease images is time-consuming and labor intensive, which makes it difficult to train grape disease identification models with excellent performance. Currently, using generative adversarial networks(GANs) to generate grape leaf images is a popular method. Unfortunately, the leaf disease images generated by conventional GANs are not clear enough and the structural integrity is insufficient. To address this problem, a novel architecture named GrapeGAN is proposed in this paper. First, suppress the loss of texture detail information during image generation, a U-Net-like generator is designed by integrating convolutions with residual blocks and reorganization (reorg) methods. Simultaneously, the concatenation (concat) method is used in the generator to retain more scale texture information. Then, to make the generated grape images structurally complete and avoid petiole and leaf structure misalignment, a discriminator is designed with a convolution block and capsule structure. Convolution is used to extract general features, and the capsule structure encodes the spatial information and the probability of the presence of spots. In subsequent experiments on the same raw data, GrapeGAN is compared to WGAN and DCGAN, and the results show that GrapeGAN outperforms the comparative models. Specifically, the Fréchet inception distance (FID) is 5.495, and the neural image assessment (NIMA) is 4.937 ± 1.515. Moreover, four convolutional neural network (CNN) recognition models are used to identify the generated grape leaf diseases. The results demonstrate that the recognition accuracy of grape leaf disease images generated by the GrapeGAN is higher than 86.36%, and the identification accuracy of VGG16 and InceptionV1 achieve 96.13%. In summary, the experimental results show the effectiveness of GrapeGAN, which proves that GrapeGAN can efficiently detect grape leaf disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
JUST发布了新的文献求助10
15秒前
veggieg发布了新的文献求助10
25秒前
kirirto发布了新的文献求助10
35秒前
JamesPei应助清雨采纳,获得10
40秒前
JUST完成签到,获得积分10
45秒前
乐乐应助kirirto采纳,获得10
45秒前
45秒前
清雨发布了新的文献求助10
51秒前
NexusExplorer应助hbzyydx46采纳,获得10
1分钟前
Uniibooy完成签到 ,获得积分10
1分钟前
Shrine完成签到,获得积分10
1分钟前
阿巡发布了新的文献求助10
1分钟前
1分钟前
hbzyydx46发布了新的文献求助10
1分钟前
2分钟前
领导范儿应助傻傻的修洁采纳,获得30
2分钟前
wangdada发布了新的文献求助10
2分钟前
Lvhao完成签到,获得积分10
2分钟前
2分钟前
2分钟前
lzy发布了新的文献求助10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
Noob_saibot完成签到,获得积分10
2分钟前
天天快乐应助wangdada采纳,获得20
3分钟前
wangdada完成签到,获得积分10
3分钟前
平常的凡白完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
GRATE完成签到 ,获得积分10
3分钟前
3分钟前
df发布了新的文献求助30
3分钟前
df完成签到,获得积分10
4分钟前
tt5114关注了科研通微信公众号
4分钟前
烟花应助傻傻的修洁采纳,获得10
4分钟前
00完成签到 ,获得积分10
4分钟前
Lucas应助傻傻的修洁采纳,获得10
4分钟前
CodeCraft应助Stella采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
tt5114发布了新的文献求助30
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845964
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748