GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 块(置换群论) 像素 发电机(电路理论) 卷积(计算机科学) 鉴别器 图像(数学) 人工神经网络 数学 物理 几何学 探测器 电信 功率(物理) 量子力学
作者
Haibin Jin,Yue Li,Jianfang Qi,Jianying Feng,Dong Tian,Weisong Mu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107055-107055 被引量:36
标识
DOI:10.1016/j.compag.2022.107055
摘要

Grape leaf disease seriously affects the yield and quality of grapes. Limited by actual conditions, collecting a large number of grape disease images is time-consuming and labor intensive, which makes it difficult to train grape disease identification models with excellent performance. Currently, using generative adversarial networks(GANs) to generate grape leaf images is a popular method. Unfortunately, the leaf disease images generated by conventional GANs are not clear enough and the structural integrity is insufficient. To address this problem, a novel architecture named GrapeGAN is proposed in this paper. First, suppress the loss of texture detail information during image generation, a U-Net-like generator is designed by integrating convolutions with residual blocks and reorganization (reorg) methods. Simultaneously, the concatenation (concat) method is used in the generator to retain more scale texture information. Then, to make the generated grape images structurally complete and avoid petiole and leaf structure misalignment, a discriminator is designed with a convolution block and capsule structure. Convolution is used to extract general features, and the capsule structure encodes the spatial information and the probability of the presence of spots. In subsequent experiments on the same raw data, GrapeGAN is compared to WGAN and DCGAN, and the results show that GrapeGAN outperforms the comparative models. Specifically, the Fréchet inception distance (FID) is 5.495, and the neural image assessment (NIMA) is 4.937 ± 1.515. Moreover, four convolutional neural network (CNN) recognition models are used to identify the generated grape leaf diseases. The results demonstrate that the recognition accuracy of grape leaf disease images generated by the GrapeGAN is higher than 86.36%, and the identification accuracy of VGG16 and InceptionV1 achieve 96.13%. In summary, the experimental results show the effectiveness of GrapeGAN, which proves that GrapeGAN can efficiently detect grape leaf disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有米饭没完成签到 ,获得积分10
1秒前
ZX发布了新的文献求助10
1秒前
2秒前
巴斯光年完成签到,获得积分10
3秒前
2007zhi发布了新的文献求助10
4秒前
伯赏浩天发布了新的文献求助10
5秒前
mao关闭了mao文献求助
6秒前
7秒前
zzn完成签到,获得积分10
7秒前
英俊的铭应助ZX采纳,获得10
8秒前
OKC完成签到,获得积分10
10秒前
10秒前
alex完成签到,获得积分10
11秒前
LoGokkk完成签到,获得积分10
12秒前
Hello应助Jackson采纳,获得10
12秒前
铭铭铭完成签到,获得积分10
13秒前
alex发布了新的文献求助10
13秒前
lynn发布了新的文献求助10
14秒前
14秒前
xin完成签到,获得积分10
14秒前
乐乐应助whisper采纳,获得10
15秒前
眼泪成诗完成签到 ,获得积分10
15秒前
16秒前
16秒前
宝海青发布了新的文献求助10
17秒前
18秒前
YifanWang应助lj采纳,获得20
18秒前
xin发布了新的文献求助10
19秒前
臻灏发布了新的文献求助10
19秒前
tanmeng77发布了新的文献求助10
20秒前
熊熊完成签到,获得积分10
20秒前
21秒前
奋斗含巧发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303