Automated 3D U‐net based segmentation of neonatal cerebral ventricles from 3D ultrasound images

侧脑室 分割 脑室 三维超声 心室 人工智能 计算机科学 超声波 医学 放射科 解剖 心脏病学
作者
Zachary Szentimrey,Sandrine de Ribaupierre,Aaron Fenster,Eranga Ukwatta
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1034-1046 被引量:14
标识
DOI:10.1002/mp.15432
摘要

Intraventricular hemorrhaging (IVH) within cerebral lateral ventricles affects 20-30% of very low birth weight infants (<1500 g). As the ventricles increase in size, the intracranial pressure increases, leading to post-hemorrhagic ventricle dilatation (PHVD), an abnormal enlargement of the head. The most widely used imaging tool for measuring IVH and PHVD is cranial two-dimensional (2D) ultrasound (US). Estimating volumetric changes over time with 2D US is unreliable due to high user variability when locating the same anatomical location at different scanning sessions. Compared to 2D US, three-dimensional (3D) US is more sensitive to volumetric changes in the ventricles and does not suffer from variability in slice acquisition. However, 3D US images require segmentation of the ventricular surface, which is tedious and time-consuming when done manually.A fast, automated ventricle segmentation method for 3D US would provide quantitative information in a timely manner when monitoring IVH and PHVD in pre-term neonates. To this end, we developed a fast and fully automated segmentation method to segment neonatal cerebral lateral ventricles from 3D US images using deep learning.Our method consists of a 3D U-Net ensemble model composed of three U-Net variants, each highlighting various aspects of the segmentation task such as the shape and boundary of the ventricles. The ensemble is made of a U-Net++, attention U-Net, and U-Net with a deep learning-based shape prior combined using a mean voting strategy. We used a dataset consisting of 190 3D US images, which was separated into two subsets, one set of 87 images contained both ventricles, and one set of 103 images contained only one ventricle (caused by limited field-of-view during acquisition). We conducted fivefold cross-validation to evaluate the performance of the models on a larger amount of test data; 165 test images of which 75 have two ventricles (two-ventricle images) and 90 have one ventricle (one-ventricle images). We compared these results to each stand-alone model and to previous works including, 2D multiplane U-Net and 2D SegNet models.Using fivefold cross-validation, the ensemble method reported a Dice similarity coefficient (DSC) of 0.720 ± 0.074, absolute volumetric difference (VD) of 3.7 ± 4.1 cm3 , and a mean absolute surface distance (MAD) of 1.14 ± 0.41 mm on 75 two-ventricle test images. Using 90 test images with a single ventricle, the model after cross-validation reported DSC, VD, and MAD values of 0.806 ± 0.111, 3.5 ± 2.9 cm3 , and 1.37 ± 1.70 mm, respectively. Compared to alternatives, the proposed ensemble yielded a higher accuracy in segmentation on both test data sets. Our method required approximately 5 s to segment one image and was substantially faster than the state-of-the-art conventional methods.Compared to the state-of-the-art non-deep learning methods, our method based on deep learning was more efficient in segmenting neonatal cerebral lateral ventricles from 3D US images with comparable or better DSC, VD, and MAD performance. Our dataset was the largest to date (190 images) for this segmentation problem and the first to segment images that show only one lateral cerebral ventricle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Royalll发布了新的文献求助10
1秒前
zhoufz发布了新的文献求助10
1秒前
香蕉觅云应助虚拟的含灵采纳,获得10
1秒前
小虎发布了新的文献求助10
1秒前
乐乐应助小可不怕困难采纳,获得10
1秒前
siina发布了新的文献求助10
2秒前
拓跋妙梦发布了新的文献求助10
2秒前
2秒前
大模型应助PanLi采纳,获得30
3秒前
4秒前
南方有故人完成签到,获得积分10
4秒前
4秒前
RocaY发布了新的文献求助10
4秒前
长情的千愁完成签到,获得积分10
6秒前
Jason完成签到 ,获得积分10
8秒前
石石刘完成签到 ,获得积分10
8秒前
9秒前
科研通AI6.1应助luo采纳,获得10
10秒前
风中远山完成签到,获得积分10
10秒前
若杉完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
A羊_完成签到,获得积分20
11秒前
Pilule完成签到 ,获得积分10
11秒前
FashionBoy应助Isaiah采纳,获得10
11秒前
科研通AI6.1应助柔弱雅彤采纳,获得10
11秒前
12秒前
12秒前
12秒前
烟花应助阿紫采纳,获得10
13秒前
13秒前
佳丽完成签到,获得积分10
13秒前
mltyyds完成签到,获得积分10
14秒前
15秒前
15秒前
勤恳易谙发布了新的文献求助10
15秒前
高兴的平露完成签到 ,获得积分10
15秒前
hankpotter完成签到,获得积分10
15秒前
cloudz完成签到,获得积分10
16秒前
香蕉觅云应助LYB吕采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106