Automated 3D U‐net based segmentation of neonatal cerebral ventricles from 3D ultrasound images

侧脑室 分割 脑室 三维超声 心室 人工智能 计算机科学 超声波 医学 放射科 解剖 心脏病学
作者
Zachary Szentimrey,de Ribaupierre Sandrine,Aaron Fenster,Eranga Ukwatta
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1034-1046 被引量:6
标识
DOI:10.1002/mp.15432
摘要

Intraventricular hemorrhaging (IVH) within cerebral lateral ventricles affects 20-30% of very low birth weight infants (<1500 g). As the ventricles increase in size, the intracranial pressure increases, leading to post-hemorrhagic ventricle dilatation (PHVD), an abnormal enlargement of the head. The most widely used imaging tool for measuring IVH and PHVD is cranial two-dimensional (2D) ultrasound (US). Estimating volumetric changes over time with 2D US is unreliable due to high user variability when locating the same anatomical location at different scanning sessions. Compared to 2D US, three-dimensional (3D) US is more sensitive to volumetric changes in the ventricles and does not suffer from variability in slice acquisition. However, 3D US images require segmentation of the ventricular surface, which is tedious and time-consuming when done manually.A fast, automated ventricle segmentation method for 3D US would provide quantitative information in a timely manner when monitoring IVH and PHVD in pre-term neonates. To this end, we developed a fast and fully automated segmentation method to segment neonatal cerebral lateral ventricles from 3D US images using deep learning.Our method consists of a 3D U-Net ensemble model composed of three U-Net variants, each highlighting various aspects of the segmentation task such as the shape and boundary of the ventricles. The ensemble is made of a U-Net++, attention U-Net, and U-Net with a deep learning-based shape prior combined using a mean voting strategy. We used a dataset consisting of 190 3D US images, which was separated into two subsets, one set of 87 images contained both ventricles, and one set of 103 images contained only one ventricle (caused by limited field-of-view during acquisition). We conducted fivefold cross-validation to evaluate the performance of the models on a larger amount of test data; 165 test images of which 75 have two ventricles (two-ventricle images) and 90 have one ventricle (one-ventricle images). We compared these results to each stand-alone model and to previous works including, 2D multiplane U-Net and 2D SegNet models.Using fivefold cross-validation, the ensemble method reported a Dice similarity coefficient (DSC) of 0.720 ± 0.074, absolute volumetric difference (VD) of 3.7 ± 4.1 cm3 , and a mean absolute surface distance (MAD) of 1.14 ± 0.41 mm on 75 two-ventricle test images. Using 90 test images with a single ventricle, the model after cross-validation reported DSC, VD, and MAD values of 0.806 ± 0.111, 3.5 ± 2.9 cm3 , and 1.37 ± 1.70 mm, respectively. Compared to alternatives, the proposed ensemble yielded a higher accuracy in segmentation on both test data sets. Our method required approximately 5 s to segment one image and was substantially faster than the state-of-the-art conventional methods.Compared to the state-of-the-art non-deep learning methods, our method based on deep learning was more efficient in segmenting neonatal cerebral lateral ventricles from 3D US images with comparable or better DSC, VD, and MAD performance. Our dataset was the largest to date (190 images) for this segmentation problem and the first to segment images that show only one lateral cerebral ventricle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
曾经耳机完成签到 ,获得积分10
1秒前
rain完成签到 ,获得积分10
1秒前
讲道理的卡卡完成签到 ,获得积分10
1秒前
水獭完成签到,获得积分10
1秒前
2秒前
2秒前
快乐滑板完成签到,获得积分0
2秒前
白小白发布了新的文献求助10
3秒前
陈淑玲完成签到,获得积分10
3秒前
4秒前
小刺发布了新的文献求助10
4秒前
机灵安白完成签到 ,获得积分10
5秒前
科研通AI5应助夏夏采纳,获得10
6秒前
酷波er应助夏夏采纳,获得10
6秒前
NexusExplorer应助夏夏采纳,获得10
6秒前
科研通AI2S应助夏夏采纳,获得10
6秒前
积极冷霜发布了新的文献求助10
6秒前
6秒前
Ava应助夏夏采纳,获得10
6秒前
科目三应助夏夏采纳,获得10
6秒前
丘比特应助夏夏采纳,获得10
6秒前
小马甲应助夏夏采纳,获得10
6秒前
6秒前
wary发布了新的文献求助10
7秒前
Genius完成签到,获得积分10
7秒前
张掖发布了新的文献求助10
9秒前
金虎完成签到,获得积分10
9秒前
小董不懂完成签到,获得积分10
9秒前
大晨发布了新的文献求助10
9秒前
斯文败类应助Liu采纳,获得10
10秒前
李爱国应助脆弱的仙人掌采纳,获得10
11秒前
打打应助张自信采纳,获得10
11秒前
11秒前
虚幻羊发布了新的文献求助10
12秒前
沙拉发布了新的文献求助10
12秒前
iNk应助陈淑玲采纳,获得10
12秒前
科研通AI2S应助BWZ采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762