Automated 3D U‐net based segmentation of neonatal cerebral ventricles from 3D ultrasound images

侧脑室 分割 脑室 三维超声 心室 人工智能 计算机科学 超声波 医学 放射科 解剖 心脏病学
作者
Zachary Szentimrey,de Ribaupierre Sandrine,Aaron Fenster,Eranga Ukwatta
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1034-1046 被引量:6
标识
DOI:10.1002/mp.15432
摘要

Intraventricular hemorrhaging (IVH) within cerebral lateral ventricles affects 20-30% of very low birth weight infants (<1500 g). As the ventricles increase in size, the intracranial pressure increases, leading to post-hemorrhagic ventricle dilatation (PHVD), an abnormal enlargement of the head. The most widely used imaging tool for measuring IVH and PHVD is cranial two-dimensional (2D) ultrasound (US). Estimating volumetric changes over time with 2D US is unreliable due to high user variability when locating the same anatomical location at different scanning sessions. Compared to 2D US, three-dimensional (3D) US is more sensitive to volumetric changes in the ventricles and does not suffer from variability in slice acquisition. However, 3D US images require segmentation of the ventricular surface, which is tedious and time-consuming when done manually.A fast, automated ventricle segmentation method for 3D US would provide quantitative information in a timely manner when monitoring IVH and PHVD in pre-term neonates. To this end, we developed a fast and fully automated segmentation method to segment neonatal cerebral lateral ventricles from 3D US images using deep learning.Our method consists of a 3D U-Net ensemble model composed of three U-Net variants, each highlighting various aspects of the segmentation task such as the shape and boundary of the ventricles. The ensemble is made of a U-Net++, attention U-Net, and U-Net with a deep learning-based shape prior combined using a mean voting strategy. We used a dataset consisting of 190 3D US images, which was separated into two subsets, one set of 87 images contained both ventricles, and one set of 103 images contained only one ventricle (caused by limited field-of-view during acquisition). We conducted fivefold cross-validation to evaluate the performance of the models on a larger amount of test data; 165 test images of which 75 have two ventricles (two-ventricle images) and 90 have one ventricle (one-ventricle images). We compared these results to each stand-alone model and to previous works including, 2D multiplane U-Net and 2D SegNet models.Using fivefold cross-validation, the ensemble method reported a Dice similarity coefficient (DSC) of 0.720 ± 0.074, absolute volumetric difference (VD) of 3.7 ± 4.1 cm3 , and a mean absolute surface distance (MAD) of 1.14 ± 0.41 mm on 75 two-ventricle test images. Using 90 test images with a single ventricle, the model after cross-validation reported DSC, VD, and MAD values of 0.806 ± 0.111, 3.5 ± 2.9 cm3 , and 1.37 ± 1.70 mm, respectively. Compared to alternatives, the proposed ensemble yielded a higher accuracy in segmentation on both test data sets. Our method required approximately 5 s to segment one image and was substantially faster than the state-of-the-art conventional methods.Compared to the state-of-the-art non-deep learning methods, our method based on deep learning was more efficient in segmenting neonatal cerebral lateral ventricles from 3D US images with comparable or better DSC, VD, and MAD performance. Our dataset was the largest to date (190 images) for this segmentation problem and the first to segment images that show only one lateral cerebral ventricle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gaobowang完成签到,获得积分10
刚刚
陈小青完成签到 ,获得积分10
2秒前
4秒前
Ava应助小小斌采纳,获得10
5秒前
6秒前
6秒前
9秒前
Venus发布了新的文献求助10
10秒前
10秒前
小李发布了新的文献求助10
11秒前
Midsummer完成签到,获得积分10
11秒前
11秒前
liux98完成签到,获得积分10
12秒前
共享精神应助一二采纳,获得10
12秒前
白映完成签到,获得积分10
12秒前
饼子完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
艺术家脾气完成签到,获得积分10
16秒前
wenxian发布了新的文献求助10
16秒前
小鱼完成签到,获得积分10
17秒前
淘宝叮咚发布了新的文献求助10
17秒前
百变小数完成签到,获得积分10
18秒前
19秒前
淘宝叮咚发布了新的文献求助10
19秒前
淘宝叮咚发布了新的文献求助10
19秒前
王芋圆完成签到,获得积分10
19秒前
淘宝叮咚发布了新的文献求助10
19秒前
淘宝叮咚发布了新的文献求助10
19秒前
淘宝叮咚发布了新的文献求助10
19秒前
淘宝叮咚发布了新的文献求助10
19秒前
Midsummer发布了新的文献求助30
19秒前
y2ktwo发布了新的文献求助10
19秒前
无花果应助kirirto采纳,获得10
20秒前
topsun完成签到,获得积分10
21秒前
yakka发布了新的文献求助10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134988
求助须知:如何正确求助?哪些是违规求助? 2785963
关于积分的说明 7774538
捐赠科研通 2441779
什么是DOI,文献DOI怎么找? 1298177
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825