Automated 3D U‐net based segmentation of neonatal cerebral ventricles from 3D ultrasound images

侧脑室 分割 脑室 三维超声 心室 人工智能 计算机科学 超声波 医学 放射科 解剖 心脏病学
作者
Zachary Szentimrey,Sandrine de Ribaupierre,Aaron Fenster,Eranga Ukwatta
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1034-1046 被引量:14
标识
DOI:10.1002/mp.15432
摘要

Intraventricular hemorrhaging (IVH) within cerebral lateral ventricles affects 20-30% of very low birth weight infants (<1500 g). As the ventricles increase in size, the intracranial pressure increases, leading to post-hemorrhagic ventricle dilatation (PHVD), an abnormal enlargement of the head. The most widely used imaging tool for measuring IVH and PHVD is cranial two-dimensional (2D) ultrasound (US). Estimating volumetric changes over time with 2D US is unreliable due to high user variability when locating the same anatomical location at different scanning sessions. Compared to 2D US, three-dimensional (3D) US is more sensitive to volumetric changes in the ventricles and does not suffer from variability in slice acquisition. However, 3D US images require segmentation of the ventricular surface, which is tedious and time-consuming when done manually.A fast, automated ventricle segmentation method for 3D US would provide quantitative information in a timely manner when monitoring IVH and PHVD in pre-term neonates. To this end, we developed a fast and fully automated segmentation method to segment neonatal cerebral lateral ventricles from 3D US images using deep learning.Our method consists of a 3D U-Net ensemble model composed of three U-Net variants, each highlighting various aspects of the segmentation task such as the shape and boundary of the ventricles. The ensemble is made of a U-Net++, attention U-Net, and U-Net with a deep learning-based shape prior combined using a mean voting strategy. We used a dataset consisting of 190 3D US images, which was separated into two subsets, one set of 87 images contained both ventricles, and one set of 103 images contained only one ventricle (caused by limited field-of-view during acquisition). We conducted fivefold cross-validation to evaluate the performance of the models on a larger amount of test data; 165 test images of which 75 have two ventricles (two-ventricle images) and 90 have one ventricle (one-ventricle images). We compared these results to each stand-alone model and to previous works including, 2D multiplane U-Net and 2D SegNet models.Using fivefold cross-validation, the ensemble method reported a Dice similarity coefficient (DSC) of 0.720 ± 0.074, absolute volumetric difference (VD) of 3.7 ± 4.1 cm3 , and a mean absolute surface distance (MAD) of 1.14 ± 0.41 mm on 75 two-ventricle test images. Using 90 test images with a single ventricle, the model after cross-validation reported DSC, VD, and MAD values of 0.806 ± 0.111, 3.5 ± 2.9 cm3 , and 1.37 ± 1.70 mm, respectively. Compared to alternatives, the proposed ensemble yielded a higher accuracy in segmentation on both test data sets. Our method required approximately 5 s to segment one image and was substantially faster than the state-of-the-art conventional methods.Compared to the state-of-the-art non-deep learning methods, our method based on deep learning was more efficient in segmenting neonatal cerebral lateral ventricles from 3D US images with comparable or better DSC, VD, and MAD performance. Our dataset was the largest to date (190 images) for this segmentation problem and the first to segment images that show only one lateral cerebral ventricle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
金金发布了新的文献求助10
2秒前
11完成签到,获得积分20
2秒前
2秒前
2秒前
爆米花应助kkk采纳,获得10
3秒前
韩嘉莉完成签到,获得积分10
3秒前
珍吖伢给珍吖伢的求助进行了留言
3秒前
轻松的芯完成签到 ,获得积分10
3秒前
TreasureY发布了新的文献求助10
4秒前
呆萌念云完成签到 ,获得积分10
4秒前
4秒前
呜啦啦啦发布了新的文献求助10
5秒前
闪闪乘风发布了新的文献求助30
5秒前
5秒前
dudu发布了新的文献求助10
7秒前
8秒前
Hello应助侧耳采纳,获得10
8秒前
你眼带笑完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
huang发布了新的文献求助10
9秒前
在水一方应助东方诩采纳,获得10
9秒前
ding应助温暖的以旋采纳,获得10
9秒前
jojo完成签到,获得积分10
10秒前
10秒前
phil发布了新的文献求助10
10秒前
科研通AI5应助赵李锋采纳,获得10
11秒前
共享精神应助1851611453采纳,获得10
11秒前
庸_完成签到,获得积分10
12秒前
12秒前
心静如水发布了新的文献求助10
13秒前
Owen应助火星采纳,获得30
14秒前
14秒前
WRZ完成签到 ,获得积分10
15秒前
善学以致用应助闪闪乘风采纳,获得10
16秒前
1111发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993552
求助须知:如何正确求助?哪些是违规求助? 4241343
关于积分的说明 13213992
捐赠科研通 4036754
什么是DOI,文献DOI怎么找? 2208675
邀请新用户注册赠送积分活动 1219601
关于科研通互助平台的介绍 1137928