聚合物
多线性映射
溶解度
分子
分子描述符
数量结构-活动关系
热力学
溶解度参数
材料科学
化学
数学
物理化学
有机化学
物理
立体化学
纯数学
作者
Mingzhe Chi,Rihab Gargouri,Tim Schrader,Kamel Damak,Ramzi Maâlej,Marek Sierka
出处
期刊:Polymers
[MDPI AG]
日期:2021-12-22
卷期号:14 (1): 26-26
被引量:10
标识
DOI:10.3390/polym14010026
摘要
Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization ΔHvap of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting ΔHvap of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of ΔHvap of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database.
科研通智能强力驱动
Strongly Powered by AbleSci AI