Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling

生物地球化学循环 土壤碳 环境科学 生态系统 生态学 草原 功能(生物学) 微生物生态学 土壤科学 土壤水分 生物 遗传学 进化生物学 细菌
作者
Gangsheng Wang,Qun Gao,Yunfeng Yang,Sarah E. Hobbie,Peter B. Reich,Jizhong Zhou
出处
期刊:Global Change Biology [Wiley]
卷期号:28 (5): 1935-1950 被引量:43
标识
DOI:10.1111/gcb.16036
摘要

Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme-mediated soil inorganic N processes in the Microbial-ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C-N fluxes, microbial C:N ratios, and functional gene abundances from a 12-year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2 fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C-N-associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2 concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem-level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
六沉发布了新的文献求助10
1秒前
Amor发布了新的文献求助10
4秒前
robi发布了新的文献求助10
5秒前
8秒前
锦哥完成签到,获得积分20
9秒前
Amor完成签到,获得积分10
13秒前
云_123发布了新的文献求助10
13秒前
嘟嘟嘟嘟完成签到 ,获得积分10
15秒前
Muller完成签到 ,获得积分10
15秒前
甜甜若血完成签到,获得积分10
18秒前
可爱以冬完成签到 ,获得积分10
18秒前
20秒前
Jasper应助爱幻想的青柠采纳,获得10
23秒前
纪俊完成签到,获得积分20
24秒前
26秒前
今后应助YI点半的飞机场采纳,获得10
26秒前
坦率完成签到,获得积分10
26秒前
29秒前
乐乐应助1592541采纳,获得10
30秒前
无一完成签到 ,获得积分10
30秒前
36秒前
yao完成签到,获得积分10
38秒前
40秒前
41秒前
yao发布了新的文献求助10
41秒前
果果超幼发布了新的文献求助10
44秒前
robi发布了新的文献求助10
45秒前
1592541发布了新的文献求助10
45秒前
打打应助科研通管家采纳,获得10
49秒前
乐乐应助科研通管家采纳,获得10
49秒前
CodeCraft应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
大模型应助科研通管家采纳,获得10
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
共享精神应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
葡萄成熟应助zhaoyingxin采纳,获得10
51秒前
我是老大应助zhaoyingxin采纳,获得10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825