MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts

医学 概化理论 磁共振成像 分割 结直肠癌 核医学 有效扩散系数 队列 癌症 放射科 人工智能 病理 计算机科学 内科学 统计 数学
作者
Franziska Knuth,Ingvild Askim Adde,Bao Ngoc Huynh,Aurora Rosvoll Groendahl,René M. Winter,Anne Negård,Stein Harald Holmedal,Sebastian Meltzer,Anne Hansen Ree,Kjersti Flatmark,Svein Dueland,Knut Håkon Hole,Therese Seierstad,Kathrine Røe Redalen,Cecilia Marie Futsæther
出处
期刊:Acta Oncologica [Informa]
卷期号:61 (2): 255-263 被引量:28
标识
DOI:10.1080/0284186x.2021.2013530
摘要

Tumor delineation is time- and labor-intensive and prone to inter- and intraobserver variations. Magnetic resonance imaging (MRI) provides good soft tissue contrast, and functional MRI captures tissue properties that may be valuable for tumor delineation. We explored MRI-based automatic segmentation of rectal cancer using a deep learning (DL) approach. We first investigated potential improvements when including both anatomical T2-weighted (T2w) MRI and diffusion-weighted MR images (DWI). Secondly, we investigated generalizability by including a second, independent cohort.Two cohorts of rectal cancer patients (C1 and C2) from different hospitals with 109 and 83 patients, respectively, were subject to 1.5 T MRI at baseline. T2w images were acquired for both cohorts and DWI (b-value of 500 s/mm2) for patients in C1. Tumors were manually delineated by three radiologists (two in C1, one in C2). A 2D U-Net was trained on T2w and T2w + DWI. Optimal parameters for image pre-processing and training were identified on C1 using five-fold cross-validation and patient Dice similarity coefficient (DSCp) as performance measure. The optimized models were evaluated on a C1 hold-out test set and the generalizability was investigated using C2.For cohort C1, the T2w model resulted in a median DSCp of 0.77 on the test set. Inclusion of DWI did not further improve the performance (DSCp 0.76). The T2w-based model trained on C1 and applied to C2 achieved a DSCp of 0.59.T2w MR-based DL models demonstrated high performance for automatic tumor segmentation, at the same level as published data on interobserver variation. DWI did not improve results further. Using DL models on unseen cohorts requires caution, and one cannot expect the same performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KIRA完成签到,获得积分10
1秒前
Dandanhuang完成签到,获得积分10
3秒前
呆萌羊青发布了新的文献求助10
3秒前
Yuang发布了新的文献求助10
4秒前
4秒前
yueyue完成签到,获得积分10
6秒前
萧水白发布了新的文献求助150
9秒前
KIRA发布了新的文献求助20
10秒前
wish发布了新的文献求助10
11秒前
Akim应助聪明的怜烟采纳,获得20
12秒前
搜集达人应助快乐小肥仔采纳,获得10
14秒前
Rundstet应助mm采纳,获得10
16秒前
海清完成签到 ,获得积分10
16秒前
18秒前
19秒前
19秒前
20秒前
白翊辰发布了新的文献求助10
24秒前
无不破哉发布了新的文献求助10
24秒前
刘家翔发布了新的文献求助10
26秒前
Ava应助卡农采纳,获得10
26秒前
XY完成签到,获得积分10
30秒前
白翊辰完成签到,获得积分10
33秒前
CipherSage应助enchanted采纳,获得10
34秒前
w婷完成签到 ,获得积分10
38秒前
SciGPT应助xwwwww采纳,获得10
38秒前
39秒前
zys完成签到,获得积分10
41秒前
42秒前
小二郎应助chen采纳,获得10
43秒前
44秒前
curtisness应助charon采纳,获得10
44秒前
46秒前
可爱的函函应助enchanted采纳,获得10
47秒前
47秒前
美好灰狼发布了新的文献求助10
48秒前
sijin1216完成签到,获得积分10
49秒前
葉要加油完成签到,获得积分20
50秒前
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359441
求助须知:如何正确求助?哪些是违规求助? 2982264
关于积分的说明 8702712
捐赠科研通 2663862
什么是DOI,文献DOI怎么找? 1458686
科研通“疑难数据库(出版商)”最低求助积分说明 675236
邀请新用户注册赠送积分活动 666300