MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts

医学 概化理论 磁共振成像 分割 结直肠癌 核医学 有效扩散系数 队列 癌症 放射科 人工智能 病理 计算机科学 内科学 统计 数学
作者
Franziska Knuth,Ingvild Askim Adde,Bao Ngoc Huynh,Aurora Rosvoll Groendahl,René M. Winter,Anne Negård,Stein Harald Holmedal,Sebastian Meltzer,Anne Hansen Ree,Kjersti Flatmark,Svein Dueland,Knut Håkon Hole,Therese Seierstad,Kathrine Røe Redalen,Cecilia Marie Futsæther
出处
期刊:Acta Oncologica [Informa]
卷期号:61 (2): 255-263 被引量:28
标识
DOI:10.1080/0284186x.2021.2013530
摘要

Tumor delineation is time- and labor-intensive and prone to inter- and intraobserver variations. Magnetic resonance imaging (MRI) provides good soft tissue contrast, and functional MRI captures tissue properties that may be valuable for tumor delineation. We explored MRI-based automatic segmentation of rectal cancer using a deep learning (DL) approach. We first investigated potential improvements when including both anatomical T2-weighted (T2w) MRI and diffusion-weighted MR images (DWI). Secondly, we investigated generalizability by including a second, independent cohort.Two cohorts of rectal cancer patients (C1 and C2) from different hospitals with 109 and 83 patients, respectively, were subject to 1.5 T MRI at baseline. T2w images were acquired for both cohorts and DWI (b-value of 500 s/mm2) for patients in C1. Tumors were manually delineated by three radiologists (two in C1, one in C2). A 2D U-Net was trained on T2w and T2w + DWI. Optimal parameters for image pre-processing and training were identified on C1 using five-fold cross-validation and patient Dice similarity coefficient (DSCp) as performance measure. The optimized models were evaluated on a C1 hold-out test set and the generalizability was investigated using C2.For cohort C1, the T2w model resulted in a median DSCp of 0.77 on the test set. Inclusion of DWI did not further improve the performance (DSCp 0.76). The T2w-based model trained on C1 and applied to C2 achieved a DSCp of 0.59.T2w MR-based DL models demonstrated high performance for automatic tumor segmentation, at the same level as published data on interobserver variation. DWI did not improve results further. Using DL models on unseen cohorts requires caution, and one cannot expect the same performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonderting完成签到,获得积分10
刚刚
无敌小汐完成签到,获得积分10
1秒前
1秒前
圈圈发布了新的文献求助10
1秒前
EW完成签到,获得积分10
1秒前
2秒前
金鸡奖完成签到,获得积分10
2秒前
研友_LNB7rL完成签到,获得积分10
2秒前
11发布了新的文献求助10
3秒前
经法发布了新的文献求助10
3秒前
bjbbh完成签到,获得积分10
4秒前
Skyrin发布了新的文献求助10
4秒前
4秒前
阿蒙完成签到,获得积分10
5秒前
传奇3应助个木采纳,获得10
5秒前
5秒前
ShawnWei完成签到,获得积分10
5秒前
飘逸秋荷完成签到,获得积分10
5秒前
年年完成签到,获得积分10
5秒前
6秒前
6秒前
四季刻歌发布了新的文献求助20
6秒前
乐乐应助努力学习采纳,获得10
6秒前
6秒前
wwt完成签到,获得积分10
6秒前
6秒前
666完成签到,获得积分10
7秒前
Ripples完成签到,获得积分10
7秒前
8秒前
8秒前
赵哈哈完成签到,获得积分10
8秒前
9秒前
10秒前
小柠檬发布了新的文献求助10
10秒前
he发布了新的文献求助10
10秒前
10秒前
CodeCraft应助啵啵采纳,获得10
10秒前
11秒前
otaro发布了新的文献求助30
11秒前
贝利亚发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678