An experimental study on visual tracking based on deep learning

计算机科学 人工智能 眼动 跟踪(教育) 计算机视觉 视频跟踪 深度学习 对象(语法) 匹配(统计) 特征(语言学) 过程(计算) 跟踪系统 光学(聚焦) 卷积神经网络 卡尔曼滤波器 数学 心理学 教育学 语言学 统计 哲学 物理 光学 操作系统
作者
Krishna Mohan A,Reddy PVN,K. Satya Prasad
标识
DOI:10.1108/ijius-08-2021-0089
摘要

Purpose In the community of visual tracking or object tracking, discriminatively learned correlation filter (DCF) has gained more importance. When it comes to speed, DCF gives the best performance. The main objective of this study is to anticipate the object visually. For tracking the object visually, the authors proposed a new model based on the convolutional regression technique. Features like HOG & Harris are used for the process of feature extraction. The proposed method will give the best results when compared to other existing methods. Design/methodology/approach This paper introduces the concept and research status of tracks; later the authors focus on the representative applications of deep learning in visual tracking. Findings Better tracking algorithms are not mentioned in the existing method. Research limitations/implications Visual tracking is the ability to control eye movements using the oculomotor system (vision and eye muscles working together). Visual tracking plays an important role when it comes to identifying an object and matching it with the database images. In visual tracking, deep learning has achieved great success. Practical implications The authors implement the multiple tracking methods, for better tracking purpose. Originality/value The main theme of this paper is to review the state-of-the-art tracking methods depending on deep learning. First, we introduce the visual tracking that is carried out manually, and secondly, we studied different existing methods of visual tracking based on deep learning. For every paper, we explained the analysis and drawbacks of that tracking method. This paper introduces the concept and research status of tracks, later we focus on the representative applications of deep learning in visual tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助lili采纳,获得10
2秒前
纯真橘子完成签到,获得积分10
2秒前
Ann完成签到,获得积分10
3秒前
wanci应助ye_hang采纳,获得10
3秒前
swing完成签到,获得积分10
3秒前
5秒前
6秒前
星宿完成签到,获得积分10
6秒前
Owen应助哇卡哇卡采纳,获得10
7秒前
zoushiyi完成签到 ,获得积分20
9秒前
Owen应助小小牛采纳,获得10
10秒前
10秒前
11秒前
oceanao应助加菲丰丰采纳,获得10
14秒前
Yishai_Song应助Noah采纳,获得10
20秒前
21秒前
Yina完成签到 ,获得积分10
24秒前
专注的代萱完成签到,获得积分20
25秒前
星宿关注了科研通微信公众号
26秒前
小谢发布了新的文献求助10
26秒前
天天快乐应助董咚咚采纳,获得10
27秒前
饱满金毛发布了新的文献求助20
28秒前
rrw完成签到 ,获得积分10
29秒前
无敌大流流完成签到,获得积分10
29秒前
子明完成签到 ,获得积分10
30秒前
30秒前
夏蓉完成签到,获得积分10
31秒前
32秒前
33秒前
guan发布了新的文献求助10
37秒前
土娃子发布了新的文献求助10
37秒前
追寻的安南完成签到 ,获得积分10
38秒前
zeng5288发布了新的文献求助50
38秒前
万能图书馆应助饱满金毛采纳,获得10
40秒前
彭于晏应助冲锋的大头菜采纳,获得10
41秒前
42秒前
42秒前
李白发布了新的文献求助10
42秒前
44秒前
闪闪尔白发布了新的文献求助10
44秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234