DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss

生物 计算生物学 遗传学 基因 错义突变 梯度升压 基因组 疾病 优先次序 人类遗传学 机器学习 突变 计算机科学 随机森林 医学 病理 经济 管理科学
作者
Fengxiao Bu,Mingjun Zhong,Qinyi Chen,Yumei Wang,Xia Zhao,Qian Zhang,Xiarong Li,Kevin T. Booth,Héla Azaiez,Yu Lu,Jing Cheng,Richard J. Smith,Huijun Yuan
出处
期刊:Human Genetics [Springer Nature]
卷期号:141 (3-4): 401-411 被引量:7
标识
DOI:10.1007/s00439-022-02440-1
摘要

Numerous computational prediction tools have been introduced to estimate the functional impact of variants in the human genome based on evolutionary constraints and biochemical metrics. However, their implementation in diagnostic settings to classify variants faced challenges with accuracy and validity. Most existing tools are pan-genome and pan-diseases, which neglected gene- and disease-specific properties and limited the accessibility of curated data. As a proof-of-concept, we developed a disease-specific prediction tool named Deafness Variant deleteriousness Prediction tool (DVPred) that focused on the 157 genes reportedly causing genetic hearing loss (HL). DVPred applied the gradient boosting decision tree (GBDT) algorithm to the dataset consisting of expert-curated pathogenic and benign variants from a large in-house HL patient cohort and public databases. With the incorporation of variant-level and gene-level features, DVPred outperformed the existing universal tools. It boasts an area under the curve (AUC) of 0.98, and showed consistent performance (AUC = 0.985) in an independent assessment dataset. We further demonstrated that multiple gene-level metrics, including low complexity genomic regions and substitution intolerance scores, were the top features of the model. A comprehensive analysis of missense variants showed a gene-specific ratio of predicted deleterious and neutral variants, implying varied tolerance or intolerance to variation in different genes. DVPred explored the utility of disease-specific strategy in improving the deafness variant prediction tool. It can improve the prioritization of pathogenic variants among massive variants identified by high-throughput sequencing on HL genes. It also shed light on the development of variant prediction tools for other genetic disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z_zq完成签到,获得积分10
刚刚
刚刚
研友_LjDyNZ完成签到,获得积分10
1秒前
李健应助super采纳,获得10
1秒前
lemshine完成签到,获得积分10
1秒前
lzr完成签到 ,获得积分10
2秒前
青秋鱼罐头完成签到,获得积分10
2秒前
l玖完成签到 ,获得积分10
2秒前
林七七完成签到 ,获得积分10
3秒前
聪慧的从雪完成签到 ,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
4秒前
本是个江湖散人完成签到,获得积分10
4秒前
muyi完成签到,获得积分10
4秒前
Dannerys完成签到 ,获得积分10
4秒前
wh完成签到,获得积分10
4秒前
安静奇迹关注了科研通微信公众号
5秒前
hjy完成签到,获得积分10
5秒前
5秒前
悲惨雪糕W完成签到 ,获得积分10
6秒前
王博雅发布了新的文献求助10
6秒前
7秒前
8秒前
归海若完成签到,获得积分10
8秒前
shashouzongshuai完成签到,获得积分10
8秒前
SciGPT应助幻心采纳,获得10
8秒前
香菜味钠片完成签到,获得积分10
8秒前
ZC完成签到,获得积分10
9秒前
汉桑波欸完成签到,获得积分10
9秒前
yuan发布了新的文献求助10
9秒前
混沌完成签到 ,获得积分10
9秒前
李建科完成签到,获得积分10
9秒前
tianzml0应助宪哥他哥采纳,获得20
9秒前
落 风完成签到,获得积分10
10秒前
sunshine完成签到,获得积分10
10秒前
10秒前
一只小陈陈完成签到,获得积分10
11秒前
11秒前
负责的初之完成签到,获得积分10
11秒前
wang完成签到,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167356
求助须知:如何正确求助?哪些是违规求助? 2818845
关于积分的说明 7923006
捐赠科研通 2478644
什么是DOI,文献DOI怎么找? 1320424
科研通“疑难数据库(出版商)”最低求助积分说明 632786
版权声明 602443