DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss

生物 计算生物学 遗传学 基因 错义突变 梯度升压 基因组 疾病 优先次序 人类遗传学 机器学习 突变 计算机科学 随机森林 医学 病理 经济 管理科学
作者
Fengxiao Bu,Mingjun Zhong,Qinyi Chen,Yumei Wang,Xia Zhao,Qian Zhang,Xiarong Li,Kevin T. Booth,Héla Azaiez,Yu Lu,Jing Cheng,Richard J. Smith,Huijun Yuan
出处
期刊:Human Genetics [Springer Nature]
卷期号:141 (3-4): 401-411 被引量:10
标识
DOI:10.1007/s00439-022-02440-1
摘要

Numerous computational prediction tools have been introduced to estimate the functional impact of variants in the human genome based on evolutionary constraints and biochemical metrics. However, their implementation in diagnostic settings to classify variants faced challenges with accuracy and validity. Most existing tools are pan-genome and pan-diseases, which neglected gene- and disease-specific properties and limited the accessibility of curated data. As a proof-of-concept, we developed a disease-specific prediction tool named Deafness Variant deleteriousness Prediction tool (DVPred) that focused on the 157 genes reportedly causing genetic hearing loss (HL). DVPred applied the gradient boosting decision tree (GBDT) algorithm to the dataset consisting of expert-curated pathogenic and benign variants from a large in-house HL patient cohort and public databases. With the incorporation of variant-level and gene-level features, DVPred outperformed the existing universal tools. It boasts an area under the curve (AUC) of 0.98, and showed consistent performance (AUC = 0.985) in an independent assessment dataset. We further demonstrated that multiple gene-level metrics, including low complexity genomic regions and substitution intolerance scores, were the top features of the model. A comprehensive analysis of missense variants showed a gene-specific ratio of predicted deleterious and neutral variants, implying varied tolerance or intolerance to variation in different genes. DVPred explored the utility of disease-specific strategy in improving the deafness variant prediction tool. It can improve the prioritization of pathogenic variants among massive variants identified by high-throughput sequencing on HL genes. It also shed light on the development of variant prediction tools for other genetic disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助7890733采纳,获得10
1秒前
科研通AI6应助32CA5采纳,获得10
1秒前
科研通AI6应助32CA5采纳,获得10
1秒前
FashionBoy应助32CA5采纳,获得10
2秒前
ingxiaiu完成签到,获得积分10
2秒前
Self发布了新的文献求助10
3秒前
kentonchow完成签到,获得积分0
3秒前
3秒前
leekk发布了新的文献求助10
3秒前
3秒前
3秒前
万嘉俊发布了新的文献求助10
4秒前
yyy完成签到,获得积分10
4秒前
flance完成签到 ,获得积分10
4秒前
5秒前
6秒前
LZ发布了新的文献求助10
6秒前
7秒前
7秒前
LNN发布了新的文献求助30
8秒前
年轻的小可完成签到 ,获得积分10
8秒前
superLmy完成签到 ,获得积分10
9秒前
吟游诗人发布了新的文献求助30
9秒前
Elytra完成签到,获得积分10
9秒前
zpctx发布了新的文献求助10
10秒前
小圈圈梦魇完成签到,获得积分10
10秒前
不知名网友完成签到,获得积分10
10秒前
10秒前
嘉1612完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
感动白开水完成签到,获得积分10
11秒前
12秒前
lin完成签到,获得积分10
12秒前
巴比龙发布了新的文献求助10
12秒前
追寻念珍发布了新的文献求助10
13秒前
nietongle发布了新的文献求助10
14秒前
14秒前
14秒前
33应助cqnuly采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164