An effective water wave optimization algorithm with problem-specific knowledge for the distributed assembly blocking flow-shop scheduling problem

拖延 计算机科学 水准点(测量) 可变邻域搜索 调度(生产过程) 作业车间调度 阻塞(统计) 流水车间调度 整数规划 数学优化 算法 元启发式 数学 大地测量学 地理 操作系统 计算机网络 地铁列车时刻表
作者
Fuqing Zhao,Dongqu Shao,Ling Wang,Tianpeng Xu,Ningning Zhu,Jonrinaldi Jonrinaldi
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:243: 108471-108471 被引量:32
标识
DOI:10.1016/j.knosys.2022.108471
摘要

The distributed assembly blocking flow-shop scheduling problem (DABFSP), which is a promising area in modern supply chains and manufacturing systems, has attracted great attention from researchers and practitioners. However, minimizing the total tardiness in DABFSP has not captured much attention so far. For solving the DABFSP with the total tardiness criterion, a mixed integer linear programming method is utilized to model the problem, wherein the total tardiness during the production process and assembly process are optimized simultaneously. A constructive heuristic (KBNEH) and a water wave optimization algorithm with problem-specific knowledge (KWWO) are presented. KBNEH is designed by combining a new dispatching rule with an insertion-based improvement procedure to obtain solutions with high quality. In KWWO, effective technologies, such as the re-developed destruction–construction​ operator, four local search methods under the framework of the variable neighborhood search strategy (VNS), the path-relinking method are applied to improve the performance of the algorithm. Comprehensive numerical experiments based on 900 small-scale benchmark instances and 810 large-scale benchmark instances are conducted to evaluate the performance of the presented algorithm. The experimental results obtained by KWWO are 1 to 4 times better than those obtained by the other comparison algorithms, which demonstrate that the effectiveness of KWWO is superior to the compared state-of-the-art algorithms for the considered problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落雪慕卿颜完成签到,获得积分10
1秒前
哈哈哈哈完成签到,获得积分10
1秒前
英吉利25发布了新的文献求助10
3秒前
研友_Z7mYwL完成签到,获得积分0
4秒前
阜睿发布了新的文献求助10
4秒前
在水一方应助邵翎365采纳,获得10
5秒前
HY完成签到,获得积分10
6秒前
长江完成签到,获得积分10
6秒前
Zengyuan完成签到,获得积分10
7秒前
风中冰香应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
那时花开应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
lq完成签到,获得积分10
9秒前
10秒前
风中冰香应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
chrisio应助科研通管家采纳,获得10
10秒前
rabpig应助科研通管家采纳,获得10
10秒前
Sun_1完成签到,获得积分10
10秒前
rabpig应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得20
10秒前
zcl应助科研通管家采纳,获得200
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294370
求助须知:如何正确求助?哪些是违规求助? 4444225
关于积分的说明 13832582
捐赠科研通 4328291
什么是DOI,文献DOI怎么找? 2376049
邀请新用户注册赠送积分活动 1371380
关于科研通互助平台的介绍 1336554