zk-AuthFeed: Protecting Data Feed to Smart Contracts With Authenticated Zero Knowledge Proof

零知识证明 计算机科学 块链 智能合约 认证(法律) 计算机安全 方案(数学) 信息隐私 理论计算机科学 密码学 数学 数学分析
作者
Zhiguo Wan,Yan Zhou,Kui Ren
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:20 (2): 1335-1347 被引量:24
标识
DOI:10.1109/tdsc.2022.3153084
摘要

The emerging blockchain technology, combined with the smart contract paradigm, is expected to transform traditional applications with decentralization. When the blockchain technology is applied to decentralize traditional applications, blockchain validators may need to take in sensitive off-chain data to execute a smart contract. On the one hand, decentralized applications (DApps) require authentic off-chain input data to correctly execute a given business procedure. On the other hand, users are reluctant to expose their sensitive privacy on the blockchain. For example, for a decentralized medical insurance DApp that takes as input personal health data, it is critical to guarantee authenticity and privacy of the data sent to the smart contract, such that the data can be verified by validators without leaking sensitive information. However, no satisfactory solution has been proposed to attain privacy and authenticity at the same time. In this work, we first present a highly efficient authenticated zero knowledge proof protocol called zk-DASNARK by extending the classical zk-SNARK scheme with data authentication. Based on zk-DASNARK, we design zk-AuthFeed, a zero-knowledge authenticated off-chain data feed scheme to achieve both data privacy and authenticity for blockchain-based DApps. Following the strategy of “compute off-chain and verify on-chain”, zk-AuthFeed can significantly reduce computation cost of blockchain validators. We fully implement a prototype of zk-AuthFeed, and conduct comprehensive experiments on a medical insurance DApp. We consider 4 typical computation models for insurance premium/reimbursement in the experiments. It shows that zk-AuthFeed is highly efficient: key generation takes about 10 seconds only, proof generation takes less than 4 seconds, and proof verification takes less than 40 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大辉完成签到 ,获得积分10
3秒前
所所应助英勇靖雁采纳,获得10
3秒前
4秒前
小鱼儿发布了新的文献求助10
4秒前
Felix0917完成签到,获得积分10
5秒前
5秒前
JiayanLi完成签到,获得积分20
5秒前
chenchao完成签到,获得积分10
6秒前
8秒前
所所应助汎影采纳,获得10
9秒前
UHPC发布了新的文献求助10
10秒前
10秒前
华仔应助寻光人采纳,获得10
11秒前
赘婿应助罗彩明采纳,获得10
11秒前
11秒前
11秒前
xiaofengyyy发布了新的文献求助10
12秒前
我是老大应助sunyuhao采纳,获得30
13秒前
14秒前
顾矜应助sunwei采纳,获得10
15秒前
SciGPT应助现实的安波采纳,获得10
16秒前
李123发布了新的文献求助10
16秒前
李健的小迷弟应助汎影采纳,获得10
17秒前
18秒前
orixero应助Applause采纳,获得10
18秒前
19秒前
小蘑菇应助太阳采纳,获得10
19秒前
19秒前
哑巴完成签到,获得积分10
19秒前
19秒前
浮游应助科研通管家采纳,获得10
20秒前
三无发布了新的文献求助10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得30
20秒前
Leanne应助科研通管家采纳,获得30
20秒前
无花果应助科研通管家采纳,获得10
20秒前
mmmmb应助科研通管家采纳,获得30
20秒前
20秒前
李燕君应助科研通管家采纳,获得30
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340