Method of fault feature selection and fusion based on poll mode and optimized weighted KPCA for bearings

模式(计算机接口) 模式识别(心理学) 断层(地质) 选择(遗传算法) 人工智能 特征选择 融合 特征(语言学) 计算机科学 数据挖掘 工程类 地质学 语言学 操作系统 哲学 地震学
作者
Junxian Shen,Feiyun Xu
出处
期刊:Measurement [Elsevier]
卷期号:194: 110950-110950 被引量:29
标识
DOI:10.1016/j.measurement.2022.110950
摘要

• A feature selection and fusion method based on poll mode and optimized WKPCA method is proposed. • The hierarchical multi-measure model is capable for sorting out highly sensitive features with more fault information self-adaptively. • The Weighted KPCA method can improve the separability in the subset of fault samples effectively. • The proposed method has higher correctness and stability for recognizing faults than other traditional classifiers. • Compared with the other three dimensionality reduction methods, the new model of feature fusion can significantly improve the fault diagnosis rate as well as stability of feature samples. The health monitoring system for equipment is essential in the smooth proceeding of industrial production. However, the fault features to be detected in monitoring systems are generally selected through projects and expertise, which are not capable for complex and ever-changing fault information and may result in incomplete correspondence to the fault types emerged. To dig deeper for the effective features hidden in the data instead of selecting by experience, a feature selection and fusion method based on poll mode and optimized Weighted Kernel Principal Component Analysis (WKPCA) method is then proposed. Specifically, inspired by poll-mode and multi-criteria strategy, a multi-measure hierarchical model is designed to sort the fault features with high sensitivity, acquiring the feature subset with corresponding weight coefficient. Considering the variation in fault information collected by different sensors, the diagnosis rate in Extreme Learning Machine (ELM) is taken as the index for evaluation of each single sensor, then the sensitivity weight matrix of features extracted by multiple sensors is constructed after linear normalization. To integrate the feature information, WKPCA is applied for the weighted fusion of features, and Quantum Genetic Algorithm (QGA) is used to search for the kernel width parameter when the best separability in the samples under the fusion is reached. Finally, such samples are introduced to drive the diagnostic model of the monitoring system in rolling bearing. The experimental results show that, compared with the traditional feature selection and fusion methods, this method is capable for sorting out highly sensitive features with more fault information self-adaptively, and can improve the separability in the subset of fault samples effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助高大的万恶采纳,获得10
1秒前
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
4秒前
祖乐松完成签到,获得积分10
4秒前
青青儿发布了新的文献求助10
4秒前
taiyan完成签到,获得积分10
5秒前
李健的粉丝团团长应助TNU采纳,获得10
5秒前
海风吹过小镇完成签到 ,获得积分10
5秒前
十津川哈哈哈完成签到,获得积分10
5秒前
wanci应助神外魔法师采纳,获得30
6秒前
苍蓝所栖发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
感动又晴发布了新的文献求助10
8秒前
安详晓亦发布了新的文献求助10
8秒前
司徒绮发布了新的文献求助10
8秒前
8秒前
YK完成签到,获得积分10
9秒前
Gauss应助科研通管家采纳,获得20
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
Xinxxx应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Xinxxx应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
大快朵颐发福完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
只争朝夕应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265