Method of fault feature selection and fusion based on poll mode and optimized weighted KPCA for bearings

模式(计算机接口) 模式识别(心理学) 断层(地质) 选择(遗传算法) 人工智能 特征选择 融合 特征(语言学) 计算机科学 数据挖掘 工程类 地质学 语言学 操作系统 哲学 地震学
作者
Junxian Shen,Feiyun Xu
出处
期刊:Measurement [Elsevier]
卷期号:194: 110950-110950 被引量:25
标识
DOI:10.1016/j.measurement.2022.110950
摘要

• A feature selection and fusion method based on poll mode and optimized WKPCA method is proposed. • The hierarchical multi-measure model is capable for sorting out highly sensitive features with more fault information self-adaptively. • The Weighted KPCA method can improve the separability in the subset of fault samples effectively. • The proposed method has higher correctness and stability for recognizing faults than other traditional classifiers. • Compared with the other three dimensionality reduction methods, the new model of feature fusion can significantly improve the fault diagnosis rate as well as stability of feature samples. The health monitoring system for equipment is essential in the smooth proceeding of industrial production. However, the fault features to be detected in monitoring systems are generally selected through projects and expertise, which are not capable for complex and ever-changing fault information and may result in incomplete correspondence to the fault types emerged. To dig deeper for the effective features hidden in the data instead of selecting by experience, a feature selection and fusion method based on poll mode and optimized Weighted Kernel Principal Component Analysis (WKPCA) method is then proposed. Specifically, inspired by poll-mode and multi-criteria strategy, a multi-measure hierarchical model is designed to sort the fault features with high sensitivity, acquiring the feature subset with corresponding weight coefficient. Considering the variation in fault information collected by different sensors, the diagnosis rate in Extreme Learning Machine (ELM) is taken as the index for evaluation of each single sensor, then the sensitivity weight matrix of features extracted by multiple sensors is constructed after linear normalization. To integrate the feature information, WKPCA is applied for the weighted fusion of features, and Quantum Genetic Algorithm (QGA) is used to search for the kernel width parameter when the best separability in the samples under the fusion is reached. Finally, such samples are introduced to drive the diagnostic model of the monitoring system in rolling bearing. The experimental results show that, compared with the traditional feature selection and fusion methods, this method is capable for sorting out highly sensitive features with more fault information self-adaptively, and can improve the separability in the subset of fault samples effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wbh完成签到,获得积分10
1秒前
咕咕咕发布了新的文献求助10
1秒前
1秒前
songsong完成签到,获得积分10
2秒前
2秒前
pearl关注了科研通微信公众号
2秒前
琴生完成签到,获得积分10
3秒前
3秒前
3秒前
Mtoc完成签到 ,获得积分10
3秒前
3秒前
跳跃老五完成签到 ,获得积分10
3秒前
3秒前
浪迹天涯完成签到,获得积分10
4秒前
包容的剑发布了新的文献求助10
4秒前
斯文的茹嫣完成签到,获得积分10
4秒前
义气笑容完成签到,获得积分10
4秒前
yufeng完成签到 ,获得积分10
5秒前
5秒前
Jenny完成签到,获得积分10
5秒前
5秒前
科研小小小白完成签到,获得积分10
6秒前
6秒前
小橙子完成签到 ,获得积分10
7秒前
8秒前
8秒前
福娃发布了新的文献求助10
8秒前
9秒前
达斯维完成签到,获得积分10
9秒前
浪迹天涯发布了新的文献求助10
9秒前
今后应助杜嘟嘟采纳,获得30
9秒前
10秒前
10秒前
清圆527完成签到,获得积分10
10秒前
JamesPei应助Zhong采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740