Method of fault feature selection and fusion based on poll mode and optimized weighted KPCA for bearings

模式(计算机接口) 模式识别(心理学) 断层(地质) 选择(遗传算法) 人工智能 特征选择 融合 特征(语言学) 计算机科学 数据挖掘 工程类 地质学 语言学 操作系统 哲学 地震学
作者
Junxian Shen,Feiyun Xu
出处
期刊:Measurement [Elsevier BV]
卷期号:194: 110950-110950 被引量:29
标识
DOI:10.1016/j.measurement.2022.110950
摘要

• A feature selection and fusion method based on poll mode and optimized WKPCA method is proposed. • The hierarchical multi-measure model is capable for sorting out highly sensitive features with more fault information self-adaptively. • The Weighted KPCA method can improve the separability in the subset of fault samples effectively. • The proposed method has higher correctness and stability for recognizing faults than other traditional classifiers. • Compared with the other three dimensionality reduction methods, the new model of feature fusion can significantly improve the fault diagnosis rate as well as stability of feature samples. The health monitoring system for equipment is essential in the smooth proceeding of industrial production. However, the fault features to be detected in monitoring systems are generally selected through projects and expertise, which are not capable for complex and ever-changing fault information and may result in incomplete correspondence to the fault types emerged. To dig deeper for the effective features hidden in the data instead of selecting by experience, a feature selection and fusion method based on poll mode and optimized Weighted Kernel Principal Component Analysis (WKPCA) method is then proposed. Specifically, inspired by poll-mode and multi-criteria strategy, a multi-measure hierarchical model is designed to sort the fault features with high sensitivity, acquiring the feature subset with corresponding weight coefficient. Considering the variation in fault information collected by different sensors, the diagnosis rate in Extreme Learning Machine (ELM) is taken as the index for evaluation of each single sensor, then the sensitivity weight matrix of features extracted by multiple sensors is constructed after linear normalization. To integrate the feature information, WKPCA is applied for the weighted fusion of features, and Quantum Genetic Algorithm (QGA) is used to search for the kernel width parameter when the best separability in the samples under the fusion is reached. Finally, such samples are introduced to drive the diagnostic model of the monitoring system in rolling bearing. The experimental results show that, compared with the traditional feature selection and fusion methods, this method is capable for sorting out highly sensitive features with more fault information self-adaptively, and can improve the separability in the subset of fault samples effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘚嘤丁完成签到 ,获得积分10
刚刚
科研通AI2S应助淡定沛珊采纳,获得20
1秒前
1秒前
1秒前
1秒前
务实青筠完成签到 ,获得积分10
1秒前
1秒前
拼搏寒凡发布了新的文献求助10
1秒前
1秒前
英吉利25发布了新的文献求助10
1秒前
ZHOUZHEN完成签到,获得积分10
2秒前
文艺鼠标发布了新的文献求助10
2秒前
陶辞发布了新的文献求助10
2秒前
mumu发布了新的文献求助10
3秒前
酷波er应助net80yhm采纳,获得10
3秒前
3秒前
Ava应助爱笑的傲薇采纳,获得10
3秒前
宿雨发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
5秒前
翟显治发布了新的文献求助10
5秒前
lala完成签到,获得积分20
5秒前
HeAuBook发布了新的文献求助10
5秒前
honestyh完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助麋鹿采纳,获得10
6秒前
ada发布了新的文献求助10
6秒前
6秒前
李爱国应助猫科动物采纳,获得10
7秒前
penghui发布了新的文献求助10
8秒前
8秒前
Crystal发布了新的文献求助10
9秒前
罗乔治完成签到,获得积分10
9秒前
tennisgirl完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
daodao发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4885154
求助须知:如何正确求助?哪些是违规求助? 4170091
关于积分的说明 12940413
捐赠科研通 3930753
什么是DOI,文献DOI怎么找? 2156753
邀请新用户注册赠送积分活动 1175137
关于科研通互助平台的介绍 1079777