Method of fault feature selection and fusion based on poll mode and optimized weighted KPCA for bearings

模式(计算机接口) 模式识别(心理学) 断层(地质) 选择(遗传算法) 人工智能 特征选择 融合 特征(语言学) 计算机科学 数据挖掘 工程类 地质学 语言学 哲学 地震学 操作系统
作者
Junxian Shen,Feiyun Xu
出处
期刊:Measurement [Elsevier BV]
卷期号:194: 110950-110950 被引量:29
标识
DOI:10.1016/j.measurement.2022.110950
摘要

• A feature selection and fusion method based on poll mode and optimized WKPCA method is proposed. • The hierarchical multi-measure model is capable for sorting out highly sensitive features with more fault information self-adaptively. • The Weighted KPCA method can improve the separability in the subset of fault samples effectively. • The proposed method has higher correctness and stability for recognizing faults than other traditional classifiers. • Compared with the other three dimensionality reduction methods, the new model of feature fusion can significantly improve the fault diagnosis rate as well as stability of feature samples. The health monitoring system for equipment is essential in the smooth proceeding of industrial production. However, the fault features to be detected in monitoring systems are generally selected through projects and expertise, which are not capable for complex and ever-changing fault information and may result in incomplete correspondence to the fault types emerged. To dig deeper for the effective features hidden in the data instead of selecting by experience, a feature selection and fusion method based on poll mode and optimized Weighted Kernel Principal Component Analysis (WKPCA) method is then proposed. Specifically, inspired by poll-mode and multi-criteria strategy, a multi-measure hierarchical model is designed to sort the fault features with high sensitivity, acquiring the feature subset with corresponding weight coefficient. Considering the variation in fault information collected by different sensors, the diagnosis rate in Extreme Learning Machine (ELM) is taken as the index for evaluation of each single sensor, then the sensitivity weight matrix of features extracted by multiple sensors is constructed after linear normalization. To integrate the feature information, WKPCA is applied for the weighted fusion of features, and Quantum Genetic Algorithm (QGA) is used to search for the kernel width parameter when the best separability in the samples under the fusion is reached. Finally, such samples are introduced to drive the diagnostic model of the monitoring system in rolling bearing. The experimental results show that, compared with the traditional feature selection and fusion methods, this method is capable for sorting out highly sensitive features with more fault information self-adaptively, and can improve the separability in the subset of fault samples effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Drogoo发布了新的文献求助10
2秒前
3秒前
3秒前
刘亦菲神颜完成签到,获得积分10
5秒前
wwj发布了新的文献求助10
5秒前
Ywq125关注了科研通微信公众号
6秒前
开心的花瓣完成签到,获得积分10
6秒前
Zefinity完成签到,获得积分10
7秒前
牛牛牛完成签到,获得积分10
7秒前
秋石完成签到,获得积分10
8秒前
8秒前
8秒前
生动路人应助晓晓采纳,获得20
8秒前
双楠应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
坦率白萱应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
10秒前
yar应助科研通管家采纳,获得10
10秒前
10秒前
早日暴富完成签到,获得积分10
11秒前
搜集达人应助virua00采纳,获得10
11秒前
hvivi6发布了新的文献求助10
12秒前
啊哭完成签到,获得积分10
14秒前
14秒前
icy_cyr完成签到,获得积分10
15秒前
16秒前
wp4605完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
斯文败类应助友好的以旋采纳,获得10
17秒前
潇洒书琴完成签到 ,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075