Method of fault feature selection and fusion based on poll mode and optimized weighted KPCA for bearings

模式(计算机接口) 模式识别(心理学) 断层(地质) 选择(遗传算法) 人工智能 特征选择 融合 特征(语言学) 计算机科学 数据挖掘 工程类 地质学 语言学 哲学 地震学 操作系统
作者
Junxian Shen,Feiyun Xu
出处
期刊:Measurement [Elsevier]
卷期号:194: 110950-110950 被引量:25
标识
DOI:10.1016/j.measurement.2022.110950
摘要

• A feature selection and fusion method based on poll mode and optimized WKPCA method is proposed. • The hierarchical multi-measure model is capable for sorting out highly sensitive features with more fault information self-adaptively. • The Weighted KPCA method can improve the separability in the subset of fault samples effectively. • The proposed method has higher correctness and stability for recognizing faults than other traditional classifiers. • Compared with the other three dimensionality reduction methods, the new model of feature fusion can significantly improve the fault diagnosis rate as well as stability of feature samples. The health monitoring system for equipment is essential in the smooth proceeding of industrial production. However, the fault features to be detected in monitoring systems are generally selected through projects and expertise, which are not capable for complex and ever-changing fault information and may result in incomplete correspondence to the fault types emerged. To dig deeper for the effective features hidden in the data instead of selecting by experience, a feature selection and fusion method based on poll mode and optimized Weighted Kernel Principal Component Analysis (WKPCA) method is then proposed. Specifically, inspired by poll-mode and multi-criteria strategy, a multi-measure hierarchical model is designed to sort the fault features with high sensitivity, acquiring the feature subset with corresponding weight coefficient. Considering the variation in fault information collected by different sensors, the diagnosis rate in Extreme Learning Machine (ELM) is taken as the index for evaluation of each single sensor, then the sensitivity weight matrix of features extracted by multiple sensors is constructed after linear normalization. To integrate the feature information, WKPCA is applied for the weighted fusion of features, and Quantum Genetic Algorithm (QGA) is used to search for the kernel width parameter when the best separability in the samples under the fusion is reached. Finally, such samples are introduced to drive the diagnostic model of the monitoring system in rolling bearing. The experimental results show that, compared with the traditional feature selection and fusion methods, this method is capable for sorting out highly sensitive features with more fault information self-adaptively, and can improve the separability in the subset of fault samples effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干豆芽发布了新的文献求助10
2秒前
xiaoyan发布了新的文献求助30
2秒前
研友_VZG7GZ应助pojian采纳,获得10
4秒前
Jade完成签到,获得积分20
6秒前
9秒前
研友_xnEOX8完成签到,获得积分10
9秒前
11秒前
幽默的溪灵给wjx的求助进行了留言
12秒前
14秒前
想喝酸奶发布了新的文献求助30
15秒前
哈哈哈哈或完成签到,获得积分20
16秒前
17秒前
dracovu完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
深情安青应助青安采纳,获得10
21秒前
26秒前
林薯条发布了新的文献求助10
26秒前
...发布了新的文献求助20
27秒前
28秒前
无花果应助慈祥的元绿采纳,获得10
31秒前
31秒前
yeyuan1017发布了新的文献求助10
32秒前
32秒前
林薯条完成签到,获得积分10
33秒前
ABS发布了新的文献求助100
35秒前
TrucCSC应助张棋鸣采纳,获得10
36秒前
37秒前
勤劳的傲晴完成签到,获得积分10
37秒前
华仔应助小冉采纳,获得10
37秒前
科研通AI2S应助小火花采纳,获得10
38秒前
科研通AI2S应助高贵的咖啡采纳,获得10
39秒前
39秒前
不配.完成签到,获得积分0
41秒前
41秒前
好的完成签到,获得积分20
42秒前
45秒前
wangjing应助Bolaka采纳,获得10
45秒前
zheshi1完成签到,获得积分10
46秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170213
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934126
捐赠科研通 2481670
什么是DOI,文献DOI怎么找? 1322010
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595