外延
材料科学
单层
化学物理
结晶学
范德瓦尔斯力
凝聚态物理
方向错误
光电子学
纳米技术
化学
分子
图层(电子)
物理
微观结构
晶界
有机化学
冶金
作者
Mengying Bian,Liang Zhu,Xiao Wang,Junho Choi,Rajesh V. Chopdekar,Sichen Wei,Lishu Wu,Chang Huai,Austin Marga,Qishuo Yang,Yuguang Li,Fei Yao,Ting Yu,S. A. Crooker,Xuemei Cheng,Renat Sabirianov,Shengbai Zhang,Junhao Lin,Yanglong Hou,Hao Zeng
标识
DOI:10.1002/adma.202200117
摘要
Realizing van der Waals (vdW) epitaxy in the 1980s represents a breakthrough that circumvents the stringent lattice matching and processing compatibility requirements in conventional covalent heteroepitaxy. However, due to the weak vdW interactions, there is little control over film qualities by the substrate. Typically, discrete domains with a spread of misorientation angles are formed, limiting the applicability of vdW epitaxy. Here, the epitaxial growth of monocrystalline, covalent Cr5 Te8 2D crystals on monolayer vdW WSe2 by chemical vapor deposition is reported, driven by interfacial dative bond formation. The lattice of Cr5 Te8 , with a lateral dimension of a few tens of micrometers, is fully commensurate with that of WSe2 via 3 × 3 (Cr5 Te8 )/7 × 7 (WSe2 ) supercell matching, forming a single-crystalline moiré superlattice. This work establishes a conceptually distinct paradigm of thin-film epitaxy, termed "dative epitaxy", which takes full advantage of covalent epitaxy with chemical bonding for fixing the atomic registry and crystal orientation, while circumventing its stringent lattice matching and processing compatibility requirements; conversely, it ensures the full flexibility of vdW epitaxy, while avoiding its poor orientation control. Cr5 Te8 2D crystals grown by dative epitaxy exhibit square magnetic hysteresis, suggesting minimized interfacial defects that can serve as pinning sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI