Multiscanning Strategy-Based Recurrent Neural Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 像素 高光谱成像 循环神经网络 卷积神经网络 特征(语言学) 空间语境意识 人工神经网络 语言学 哲学
作者
Weilian Zhou,Sei‐ichiro Kamata,Zhengbo Luo,Haipeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:28
标识
DOI:10.1109/tgrs.2021.3138742
摘要

Most methods based on the convolutional neural network show satisfying performance for hyperspectral image (HSI) classification. However, the spatial dependence among different pixels is not well learned by CNNs. A recurrent neural network (RNN) can effectively establish the dependence of nonadjacent pixels and ensure that each feature activation in its output is an activation at the specific location concerning the whole image, in contrast to the usual local context window in the CNNs. However, recent limited conversion schemes in RNN-based methods for HSI classification cannot fully capture the complete spatial dependence of an HSI patch. In this study, a novel multiscanning strategy with RNN is proposed to feature the sequential character of the HSI pixel and fully consider the spatial dependence in the HSI patch. By investigating different scanning forms, eight scanning orders are considered spatially, which flattens one local HSI patch into eight neighboring continuous pixel sequences. Moreover, considering that eight scanning orders complement one local patch with correlative dependence, the concatenated features from all scanning orders are fed into the RNN again for complementarity. As a result, the network can achieve competitive classification performance on three publicly accessible datasets using fewer parameters than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qks完成签到 ,获得积分10
刚刚
ahxb完成签到,获得积分10
3秒前
linjiaxin完成签到,获得积分10
5秒前
uniphoton完成签到,获得积分10
6秒前
6秒前
小蘑菇应助ahxb采纳,获得10
6秒前
赤枫彤云发布了新的文献求助10
6秒前
能干的月光完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Tushar完成签到,获得积分10
7秒前
linjiaxin发布了新的文献求助10
8秒前
May应助露露采纳,获得20
9秒前
思源应助研白采纳,获得10
9秒前
K先生完成签到,获得积分10
9秒前
123关闭了123文献求助
12秒前
和谐之玉发布了新的文献求助200
14秒前
16秒前
17秒前
lili完成签到,获得积分10
18秒前
鱼仔发布了新的文献求助10
19秒前
22秒前
22秒前
研白发布了新的文献求助10
23秒前
皮皮完成签到 ,获得积分10
26秒前
宋子虎发布了新的文献求助10
26秒前
linda关注了科研通微信公众号
27秒前
鱼仔完成签到,获得积分10
29秒前
30秒前
兴奋的定帮完成签到 ,获得积分0
31秒前
赘婿应助刘刘大顺采纳,获得10
32秒前
司空元正完成签到 ,获得积分10
32秒前
Owen应助liuzengzhang666采纳,获得10
32秒前
xiejinhui发布了新的文献求助10
33秒前
雪鸽鸽完成签到,获得积分10
36秒前
传奇3应助xiejinhui采纳,获得10
38秒前
刻苦羽毛完成签到,获得积分10
39秒前
虚心的芹发布了新的文献求助10
39秒前
8R60d8应助您好刘皇叔采纳,获得10
40秒前
40秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150