已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiscanning Strategy-Based Recurrent Neural Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 像素 高光谱成像 循环神经网络 卷积神经网络 特征(语言学) 空间语境意识 人工神经网络 哲学 语言学
作者
Weilian Zhou,Sei‐ichiro Kamata,Zhengbo Luo,Haipeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:28
标识
DOI:10.1109/tgrs.2021.3138742
摘要

Most methods based on the convolutional neural network show satisfying performance for hyperspectral image (HSI) classification. However, the spatial dependence among different pixels is not well learned by CNNs. A recurrent neural network (RNN) can effectively establish the dependence of nonadjacent pixels and ensure that each feature activation in its output is an activation at the specific location concerning the whole image, in contrast to the usual local context window in the CNNs. However, recent limited conversion schemes in RNN-based methods for HSI classification cannot fully capture the complete spatial dependence of an HSI patch. In this study, a novel multiscanning strategy with RNN is proposed to feature the sequential character of the HSI pixel and fully consider the spatial dependence in the HSI patch. By investigating different scanning forms, eight scanning orders are considered spatially, which flattens one local HSI patch into eight neighboring continuous pixel sequences. Moreover, considering that eight scanning orders complement one local patch with correlative dependence, the concatenated features from all scanning orders are fed into the RNN again for complementarity. As a result, the network can achieve competitive classification performance on three publicly accessible datasets using fewer parameters than other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
2秒前
5秒前
6秒前
8秒前
骆慧桢完成签到 ,获得积分10
8秒前
知秋完成签到 ,获得积分10
9秒前
10秒前
dyf发布了新的文献求助10
10秒前
12秒前
幽默的友容完成签到,获得积分10
14秒前
小二郎应助dyf采纳,获得10
14秒前
李健的小迷弟应助YY采纳,获得10
15秒前
18秒前
dyf完成签到,获得积分10
21秒前
在水一方应助唐阳采纳,获得10
21秒前
22秒前
22秒前
Shaw发布了新的文献求助10
24秒前
26秒前
紫薯球完成签到,获得积分10
26秒前
fveie完成签到 ,获得积分10
26秒前
zz发布了新的文献求助10
31秒前
阿泽完成签到,获得积分10
31秒前
31秒前
英姑应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得10
31秒前
无极微光应助科研通管家采纳,获得50
31秒前
shhoing应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
32秒前
姆姆没买完成签到 ,获得积分10
33秒前
Donnie333完成签到,获得积分10
34秒前
飘逸惠完成签到,获得积分10
34秒前
852应助Joeswith采纳,获得10
34秒前
YY完成签到,获得积分10
36秒前
41秒前
汉堡包应助lucy采纳,获得10
42秒前
unfraid发布了新的文献求助10
42秒前
鲤鱼幻天完成签到,获得积分20
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538374
求助须知:如何正确求助?哪些是违规求助? 4625518
关于积分的说明 14596301
捐赠科研通 4566118
什么是DOI,文献DOI怎么找? 2502975
邀请新用户注册赠送积分活动 1481281
关于科研通互助平台的介绍 1452542