Multiscanning Strategy-Based Recurrent Neural Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 像素 高光谱成像 循环神经网络 卷积神经网络 特征(语言学) 空间语境意识 人工神经网络 哲学 语言学
作者
Weilian Zhou,Sei‐ichiro Kamata,Zhengbo Luo,Haipeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:28
标识
DOI:10.1109/tgrs.2021.3138742
摘要

Most methods based on the convolutional neural network show satisfying performance for hyperspectral image (HSI) classification. However, the spatial dependence among different pixels is not well learned by CNNs. A recurrent neural network (RNN) can effectively establish the dependence of nonadjacent pixels and ensure that each feature activation in its output is an activation at the specific location concerning the whole image, in contrast to the usual local context window in the CNNs. However, recent limited conversion schemes in RNN-based methods for HSI classification cannot fully capture the complete spatial dependence of an HSI patch. In this study, a novel multiscanning strategy with RNN is proposed to feature the sequential character of the HSI pixel and fully consider the spatial dependence in the HSI patch. By investigating different scanning forms, eight scanning orders are considered spatially, which flattens one local HSI patch into eight neighboring continuous pixel sequences. Moreover, considering that eight scanning orders complement one local patch with correlative dependence, the concatenated features from all scanning orders are fed into the RNN again for complementarity. As a result, the network can achieve competitive classification performance on three publicly accessible datasets using fewer parameters than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助徐昊雯采纳,获得10
刚刚
被动科研发布了新的文献求助10
刚刚
1秒前
攀攀发布了新的文献求助10
1秒前
科研通AI6应助ChenXY采纳,获得20
1秒前
1秒前
2秒前
小豪发布了新的文献求助50
2秒前
书瑶发布了新的文献求助10
2秒前
Sherry完成签到,获得积分10
2秒前
2秒前
4秒前
风趣亦巧完成签到 ,获得积分10
5秒前
我是老大应助zifeimo采纳,获得10
5秒前
5秒前
6秒前
FashionBoy应助李哈哈采纳,获得10
6秒前
tz发布了新的文献求助10
6秒前
鱼海寻俞完成签到,获得积分10
7秒前
小刘发布了新的文献求助10
7秒前
英姑应助PPD采纳,获得10
7秒前
小豪完成签到,获得积分10
8秒前
大海123完成签到,获得积分10
8秒前
wbp31驳回了情怀应助
8秒前
jie酱拌面应助山上的树采纳,获得10
9秒前
吴剑宇发布了新的文献求助10
10秒前
10秒前
大宏发布了新的文献求助30
10秒前
aktuell发布了新的文献求助30
11秒前
12秒前
QQ完成签到,获得积分10
12秒前
上官若男应助亓大大采纳,获得10
13秒前
dd完成签到 ,获得积分10
13秒前
13秒前
庸俗完成签到,获得积分20
14秒前
14秒前
黄晓梅给黄晓梅的求助进行了留言
14秒前
隐形曼青应助gbr0519采纳,获得10
15秒前
风中尔蝶关注了科研通微信公众号
15秒前
小二郎应助tz采纳,获得10
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482