Multiscanning Strategy-Based Recurrent Neural Network for Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 像素 高光谱成像 循环神经网络 卷积神经网络 特征(语言学) 空间语境意识 人工神经网络 哲学 语言学
作者
Weilian Zhou,Sei‐ichiro Kamata,Zhengbo Luo,Haipeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:28
标识
DOI:10.1109/tgrs.2021.3138742
摘要

Most methods based on the convolutional neural network show satisfying performance for hyperspectral image (HSI) classification. However, the spatial dependence among different pixels is not well learned by CNNs. A recurrent neural network (RNN) can effectively establish the dependence of nonadjacent pixels and ensure that each feature activation in its output is an activation at the specific location concerning the whole image, in contrast to the usual local context window in the CNNs. However, recent limited conversion schemes in RNN-based methods for HSI classification cannot fully capture the complete spatial dependence of an HSI patch. In this study, a novel multiscanning strategy with RNN is proposed to feature the sequential character of the HSI pixel and fully consider the spatial dependence in the HSI patch. By investigating different scanning forms, eight scanning orders are considered spatially, which flattens one local HSI patch into eight neighboring continuous pixel sequences. Moreover, considering that eight scanning orders complement one local patch with correlative dependence, the concatenated features from all scanning orders are fed into the RNN again for complementarity. As a result, the network can achieve competitive classification performance on three publicly accessible datasets using fewer parameters than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助我学不进去了采纳,获得10
1秒前
Jess完成签到,获得积分10
2秒前
爱听歌的冷安完成签到,获得积分10
3秒前
小菜瓜完成签到,获得积分10
3秒前
xxfsx应助sally采纳,获得10
5秒前
xiaoxin发布了新的文献求助10
5秒前
机灵饼干发布了新的文献求助150
6秒前
anna1992发布了新的文献求助10
6秒前
8秒前
9秒前
Jasper应助xiaoxin采纳,获得10
10秒前
12秒前
hbhbj应助小菜瓜采纳,获得20
13秒前
葵花籽完成签到,获得积分10
14秒前
keeeeeeeli发布了新的文献求助10
15秒前
15秒前
独特的初彤完成签到 ,获得积分10
18秒前
赘婿应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
小青椒应助科研通管家采纳,获得100
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
凤凰应助科研通管家采纳,获得30
19秒前
wanci应助松松松采纳,获得50
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
WB87应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
WB87应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
NiL应助科研通管家采纳,获得10
20秒前
20秒前
英俊的铭应助xxm采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
Hilda007应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637