A Double Triangular Feature-Based Sensor Sequence Coding Approach for Identifying Chinese Liquors Using an E-Nose System

电子鼻 模式识别(心理学) 特征提取 人工智能 k-最近邻算法 特征向量 特征(语言学) 编码(社会科学) 计算机科学 随机森林 算法 数学 统计 语言学 哲学
作者
Huayan Hou,Qing-Hao Meng,Qi Pan,Li-Cheng Jin
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (5): 3878-3887 被引量:4
标识
DOI:10.1109/jsen.2022.3144689
摘要

Herein, a novel model-free double triangular feature-based sensor sequence coding approach is developed to identify Chinese liquors using a self-designed electronic nose (e-nose) system. In the feature extraction stage, the response curve of each gas sensor of the e-nose is averagely divided into ten segments, followed by a summation of the response voltages in each segment to form the voltage features. Two triangular feature sets, of which the number of the feature layers is equal to the number of sensors used, are subsequently constructed for each segment of each liquor sample based on voltage features. The feature’s sensor sequence (SS) codes are generated by arranging features corresponding to different sensors or different positions of the same layer in each triangular feature set in ascending order. The sample SS codes are obtained when all the feature SS codes within a sample are connected. The SS codes of each liquor type are then constructed by integrating the coincident SS codes with the inconsistent SS codes of all the training samples within the liquor type, where the latter are marked as zero. In the identification stage, the liquor type whose SS codes are the most similar to those of the testing samples is selected as the predicted result of the sample. The proposed method has an average accuracy of 96.3%, which is considerably higher than traditional classification algorithms, such as random forest, support vector machine, naive Bayesian, k nearest neighbor, voting-extreme learning machine, long short-term memory, and gated recurrent unit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霜鸣完成签到,获得积分10
刚刚
丘比特应助Steven采纳,获得10
5秒前
6秒前
asdsfz完成签到,获得积分10
6秒前
8秒前
tds发布了新的文献求助10
8秒前
9秒前
11秒前
Hello应助鹿鸣采纳,获得10
11秒前
12秒前
12秒前
丘比特应助浅夏采纳,获得10
12秒前
12秒前
乐尤琉发布了新的文献求助10
13秒前
晗晗发布了新的文献求助10
13秒前
13秒前
夕夕口口发布了新的文献求助10
13秒前
韩韩喜欢吃蛋糕完成签到,获得积分10
14秒前
悲凉的笑卉完成签到,获得积分10
15秒前
16秒前
DSFSR发布了新的文献求助10
17秒前
fanghua发布了新的文献求助10
17秒前
阿豪要发文章完成签到,获得积分10
19秒前
晗晗完成签到,获得积分10
19秒前
这次会赢吗完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
26秒前
大力寇完成签到 ,获得积分10
30秒前
寒冷鹏煊发布了新的文献求助10
30秒前
Steven发布了新的文献求助10
31秒前
VickyS发布了新的文献求助10
31秒前
shuyunlou发布了新的文献求助10
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
cherlie应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得30
34秒前
Owen应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309