A Double Triangular Feature-Based Sensor Sequence Coding Approach for Identifying Chinese Liquors Using an E-Nose System

电子鼻 模式识别(心理学) 特征提取 人工智能 k-最近邻算法 特征向量 特征(语言学) 编码(社会科学) 计算机科学 随机森林 算法 数学 统计 语言学 哲学
作者
Huayan Hou,Qing-Hao Meng,Qi Pan,Li-Cheng Jin
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (5): 3878-3887 被引量:4
标识
DOI:10.1109/jsen.2022.3144689
摘要

Herein, a novel model-free double triangular feature-based sensor sequence coding approach is developed to identify Chinese liquors using a self-designed electronic nose (e-nose) system. In the feature extraction stage, the response curve of each gas sensor of the e-nose is averagely divided into ten segments, followed by a summation of the response voltages in each segment to form the voltage features. Two triangular feature sets, of which the number of the feature layers is equal to the number of sensors used, are subsequently constructed for each segment of each liquor sample based on voltage features. The feature’s sensor sequence (SS) codes are generated by arranging features corresponding to different sensors or different positions of the same layer in each triangular feature set in ascending order. The sample SS codes are obtained when all the feature SS codes within a sample are connected. The SS codes of each liquor type are then constructed by integrating the coincident SS codes with the inconsistent SS codes of all the training samples within the liquor type, where the latter are marked as zero. In the identification stage, the liquor type whose SS codes are the most similar to those of the testing samples is selected as the predicted result of the sample. The proposed method has an average accuracy of 96.3%, which is considerably higher than traditional classification algorithms, such as random forest, support vector machine, naive Bayesian, k nearest neighbor, voting-extreme learning machine, long short-term memory, and gated recurrent unit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
塔恩沃特发布了新的文献求助10
2秒前
Charley发布了新的文献求助10
3秒前
5秒前
wangyr11发布了新的文献求助10
5秒前
千寻完成签到 ,获得积分10
5秒前
科研通AI5应助Suki采纳,获得10
6秒前
7秒前
吃猫的鱼发布了新的文献求助10
8秒前
TX完成签到,获得积分10
9秒前
开心不愁发布了新的文献求助10
10秒前
良辰应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
suibianba应助科研通管家采纳,获得10
11秒前
良辰应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
良辰应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
良辰应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
dll发布了新的文献求助10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
suibianba应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
良辰应助科研通管家采纳,获得10
13秒前
良辰应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
良辰应助科研通管家采纳,获得10
13秒前
魔幻的盼芙完成签到 ,获得积分10
16秒前
从容安珊完成签到,获得积分10
16秒前
英姑应助望北采纳,获得30
16秒前
yjihn发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344