内质网
未折叠蛋白反应
生物
细胞生物学
XBP1型
黑腹果蝇
自噬
程序性细胞死亡
RNA干扰
表型
内吞循环
遗传学
基因
细胞
细胞凋亡
内吞作用
核糖核酸
RNA剪接
作者
Lea Gerstner,Mengmeng Chen,Lina L Kampf,Julian Milosavljevic,Konrad Lang,Ronen Schneider,Friedhelm Hildebrandt,Martin Helmstädter,Gerd Walz,Tobias Hermle
标识
DOI:10.1016/j.kint.2021.12.031
摘要
Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies. Risk variants of the apolipoprotein-L1 (APOL1) gene are associated with severe kidney disease, putting homozygous carriers at risk. Since APOL1 lacks orthologs in all major model organisms, a wide range of mechanisms frequently in conflict have been described for APOL1-associated nephropathies. The genetic toolkit in Drosophila allows unique in vivo insights into disrupted cellular homeostasis. To perform a mechanistic analysis, we expressed human APOL1 control and gain-of-function kidney risk variants in the podocyte-like garland cells of Drosophila nephrocytes and a wing precursor tissue. Expression of APOL1 risk variants was found to elevate endocytic function of garland cell nephrocytes that simultaneously showed early signs of cell death. Wild-type APOL1 had a significantly milder effect, while a control transgene with deletion of the short BH3 domain showed no overt phenotype. Nephrocyte endo-lysosomal function and slit diaphragm architecture remained unaffected by APOL1 risk variants, but endoplasmic reticulum (ER) swelling, chaperone induction, and expression of the reporter Xbp1-EGFP suggested an ER stress response. Pharmacological inhibition of ER stress diminished APOL1-mediated cell death and direct ER stress induction enhanced nephrocyte endocytic function similar to expression of APOL1 risk variants. We confirmed APOL1-dependent ER stress in the Drosophila wing precursor where silencing the IRE1-dependent branch of ER stress signaling by inhibition with Xbp1-RNAi abrogated cell death, representing the first rescue of APOL1-associated cytotoxicity in vivo. Thus, we uncovered ER stress as an essential consequence of APOL1 risk variant expression in vivo in Drosophila, suggesting a central role of this pathway in the pathogenesis of APOL1-associated nephropathies.
科研通智能强力驱动
Strongly Powered by AbleSci AI