癫痫
癫痫发生
药理学
神经科学
医学
药物发现
谷氨酸受体
生物
生物信息学
内科学
受体
作者
Krzysztof Łukawski,Stanisław J. Czuczwar
标识
DOI:10.1080/14728222.2022.2039120
摘要
Around 30% of patients with epilepsy suffer from drug-resistant seizures. Drug-resistant seizures may have significant consequences such as sudden death in epilepsy, injuries, memory disturbances, and childhood learning and developmental problems. Available antiepileptic drugs (AEDs) work via numerous mechanisms - mainly through inhibition of voltage-operated Na+ and/or Ca2+ channels, excitation of K+ channels, enhancement of GABA-mediated inhibition and/or blockade of glutamate-produced excitation. However, the discovery and development of novel brain targets may improve the future pharmacological management of epilepsy and hence is of pivotal importance.This article examines novel drug targets such as brain multidrug efflux transporters and inflammatory pathways; it progresses to discuss possible strategies for the management of drug-resistant seizures. Reduction of the consequences of blood brain barrier dysfunction and enhancement of anti-oxidative defense are discussed.Novel drug targets comprise brain multidrug efflux transporters, TGF-β, Nrf2-ARE or m-TOR signaling and inflammatory pathways. Gene therapy and antagomirs seem the most promising targets. Epileptic foci may be significantly suppressed by viral-vector-mediated gene transfer, leading to an increased in situ concentration of inhibitory factors (for instance, galanin). Also, antagomirs offer a promising possibility of seizure inhibition by silencing micro-RNAs involved in epileptogenesis and possibly in seizure generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI