亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-step solar irradiation prediction based on weather forecast and generative deep learning model

深度学习 计算机科学 预测建模 数值天气预报 人工智能 天气预报 气象学 机器学习 地理
作者
Yuan Gao,Shohei Miyata,Yasunori Akashi
出处
期刊:Renewable Energy [Elsevier]
卷期号:188: 637-650 被引量:8
标识
DOI:10.1016/j.renene.2022.02.051
摘要

With the rapid development of computer technology, more and more deep learning models are used in solar radiation (irradiation) prediction. There have been a lot of studies discussing the research of this type of model. However, how to better apply the deep learning model in the optimization method of building energy system, such as multi-step solar radiation (irradiation) prediction model in model predictive control (MPC), is still a challenging issue due to the complexity of the time series and the accumulation of errors in multi-step forecasts. In this research, a deep generative model based on LSTM is developed for multi-step solar irradiation prediction at least 24 h in the future. Measured data and temperature forecast data from the Tokyo Meteorological Agency were used for training and testing in this experiment. The results show that generating the model first can effectively avoid the problem of error accumulation. The generative model can produce an accuracy improvement of 7.7 % against traditional regression LSTM model. Secondly, the introduction of the temperature forecast data from the previous one day can increase the forecast accuracy by about 18% points. When the earlier temperature forecast is used, the forecast accuracy will gradually decrease, and the use of the temperature forecast released 3 days before can hardly improve the forecast effect. In the end, using hourly temperature forecasts will result in better forecast accuracy than using daily temperature forecasts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzy完成签到 ,获得积分10
4秒前
西吴完成签到 ,获得积分10
5秒前
Hello应助yuanyuan采纳,获得10
5秒前
waomi完成签到,获得积分10
9秒前
共享精神应助Jeff采纳,获得10
12秒前
14秒前
优美紫槐发布了新的文献求助10
20秒前
Jeff完成签到,获得积分10
23秒前
32秒前
36秒前
Jeff发布了新的文献求助10
36秒前
Yin完成签到,获得积分10
39秒前
41秒前
张志超发布了新的文献求助10
45秒前
48秒前
wonder123完成签到,获得积分10
51秒前
幽默赛君完成签到 ,获得积分10
53秒前
54秒前
57秒前
yuanyuan发布了新的文献求助10
59秒前
YYY666发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
优美紫槐发布了新的文献求助10
1分钟前
Zenia发布了新的文献求助10
1分钟前
鸭子不是鸭完成签到,获得积分20
1分钟前
科研通AI6应助QA采纳,获得50
1分钟前
哎亚完成签到,获得积分10
1分钟前
wu完成签到,获得积分10
1分钟前
1分钟前
喜宝发布了新的文献求助10
1分钟前
传奇3应助yuanyuan采纳,获得10
1分钟前
aliu发布了新的文献求助30
1分钟前
BLUE发布了新的文献求助10
1分钟前
zzz完成签到,获得积分10
1分钟前
1分钟前
YYY666完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898