已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-step solar irradiation prediction based on weather forecast and generative deep learning model

深度学习 计算机科学 预测建模 数值天气预报 人工智能 天气预报 气象学 机器学习 地理
作者
Yuan Gao,Shohei Miyata,Yasunori Akashi
出处
期刊:Renewable Energy [Elsevier]
卷期号:188: 637-650 被引量:8
标识
DOI:10.1016/j.renene.2022.02.051
摘要

With the rapid development of computer technology, more and more deep learning models are used in solar radiation (irradiation) prediction. There have been a lot of studies discussing the research of this type of model. However, how to better apply the deep learning model in the optimization method of building energy system, such as multi-step solar radiation (irradiation) prediction model in model predictive control (MPC), is still a challenging issue due to the complexity of the time series and the accumulation of errors in multi-step forecasts. In this research, a deep generative model based on LSTM is developed for multi-step solar irradiation prediction at least 24 h in the future. Measured data and temperature forecast data from the Tokyo Meteorological Agency were used for training and testing in this experiment. The results show that generating the model first can effectively avoid the problem of error accumulation. The generative model can produce an accuracy improvement of 7.7 % against traditional regression LSTM model. Secondly, the introduction of the temperature forecast data from the previous one day can increase the forecast accuracy by about 18% points. When the earlier temperature forecast is used, the forecast accuracy will gradually decrease, and the use of the temperature forecast released 3 days before can hardly improve the forecast effect. In the end, using hourly temperature forecasts will result in better forecast accuracy than using daily temperature forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美满平松完成签到 ,获得积分10
1秒前
1秒前
墨墨的小蝴蝶完成签到,获得积分10
1秒前
Ivy完成签到,获得积分10
2秒前
3秒前
cl发布了新的文献求助10
3秒前
浮游应助岱岱采纳,获得10
3秒前
4秒前
4秒前
Wwwwww发布了新的文献求助10
5秒前
woosa完成签到 ,获得积分10
5秒前
sasa完成签到 ,获得积分10
6秒前
快乐的寄容完成签到 ,获得积分10
6秒前
小刘哥儿发布了新的文献求助10
6秒前
柠檬泡芙发布了新的文献求助10
7秒前
Raven应助qwq采纳,获得10
7秒前
丽君发布了新的文献求助10
10秒前
zly完成签到,获得积分10
10秒前
11秒前
cl完成签到,获得积分10
12秒前
敌敌畏完成签到,获得积分10
13秒前
nzlatto完成签到 ,获得积分10
14秒前
15秒前
周子文发布了新的文献求助10
19秒前
lqy完成签到,获得积分10
19秒前
19秒前
20秒前
Criminology34举报暖阳求助涉嫌违规
20秒前
21秒前
21秒前
廖嘉俊发布了新的文献求助10
22秒前
英吉利25发布了新的文献求助10
22秒前
22秒前
Hairee发布了新的文献求助10
24秒前
24秒前
yu202408应助bubble采纳,获得30
25秒前
香蕉觅云应助无私的梦凡采纳,获得10
26秒前
情怀应助味精采纳,获得10
27秒前
lqy发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312441
求助须知:如何正确求助?哪些是违规求助? 4456140
关于积分的说明 13865543
捐赠科研通 4344617
什么是DOI,文献DOI怎么找? 2385967
邀请新用户注册赠送积分活动 1380304
关于科研通互助平台的介绍 1348703