亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-step solar irradiation prediction based on weather forecast and generative deep learning model

深度学习 计算机科学 预测建模 数值天气预报 人工智能 天气预报 气象学 机器学习 地理
作者
Yuan Gao,Shohei Miyata,Yasunori Akashi
出处
期刊:Renewable Energy [Elsevier]
卷期号:188: 637-650 被引量:8
标识
DOI:10.1016/j.renene.2022.02.051
摘要

With the rapid development of computer technology, more and more deep learning models are used in solar radiation (irradiation) prediction. There have been a lot of studies discussing the research of this type of model. However, how to better apply the deep learning model in the optimization method of building energy system, such as multi-step solar radiation (irradiation) prediction model in model predictive control (MPC), is still a challenging issue due to the complexity of the time series and the accumulation of errors in multi-step forecasts. In this research, a deep generative model based on LSTM is developed for multi-step solar irradiation prediction at least 24 h in the future. Measured data and temperature forecast data from the Tokyo Meteorological Agency were used for training and testing in this experiment. The results show that generating the model first can effectively avoid the problem of error accumulation. The generative model can produce an accuracy improvement of 7.7 % against traditional regression LSTM model. Secondly, the introduction of the temperature forecast data from the previous one day can increase the forecast accuracy by about 18% points. When the earlier temperature forecast is used, the forecast accuracy will gradually decrease, and the use of the temperature forecast released 3 days before can hardly improve the forecast effect. In the end, using hourly temperature forecasts will result in better forecast accuracy than using daily temperature forecasts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
8秒前
我爱学习完成签到,获得积分10
12秒前
13秒前
小璐完成签到,获得积分20
14秒前
我爱学习发布了新的文献求助10
19秒前
Linda发布了新的文献求助10
20秒前
27秒前
kangwen发布了新的文献求助10
33秒前
34秒前
顾矜应助一见喜采纳,获得10
38秒前
Linda完成签到,获得积分10
55秒前
56秒前
科研通AI6.1应助lemon采纳,获得10
57秒前
58秒前
一见喜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
风吹麦田应助kangwen采纳,获得30
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
lemon完成签到,获得积分10
1分钟前
在水一方应助小璐采纳,获得10
1分钟前
lemon发布了新的文献求助10
1分钟前
充电宝应助伊祁夜明采纳,获得10
1分钟前
2分钟前
西早完成签到 ,获得积分10
2分钟前
Nichols发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
漂亮幻莲完成签到,获得积分10
2分钟前
2分钟前
2分钟前
斯文败类应助漂亮幻莲采纳,获得10
2分钟前
2分钟前
mingjiang完成签到,获得积分10
2分钟前
小璐发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731973
求助须知:如何正确求助?哪些是违规求助? 5335177
关于积分的说明 15321878
捐赠科研通 4877749
什么是DOI,文献DOI怎么找? 2620617
邀请新用户注册赠送积分活动 1569892
关于科研通互助平台的介绍 1526410