Multi-step solar irradiation prediction based on weather forecast and generative deep learning model

深度学习 计算机科学 预测建模 数值天气预报 人工智能 天气预报 气象学 机器学习 地理
作者
Yuan Gao,Shohei Miyata,Yasunori Akashi
出处
期刊:Renewable Energy [Elsevier]
卷期号:188: 637-650 被引量:8
标识
DOI:10.1016/j.renene.2022.02.051
摘要

With the rapid development of computer technology, more and more deep learning models are used in solar radiation (irradiation) prediction. There have been a lot of studies discussing the research of this type of model. However, how to better apply the deep learning model in the optimization method of building energy system, such as multi-step solar radiation (irradiation) prediction model in model predictive control (MPC), is still a challenging issue due to the complexity of the time series and the accumulation of errors in multi-step forecasts. In this research, a deep generative model based on LSTM is developed for multi-step solar irradiation prediction at least 24 h in the future. Measured data and temperature forecast data from the Tokyo Meteorological Agency were used for training and testing in this experiment. The results show that generating the model first can effectively avoid the problem of error accumulation. The generative model can produce an accuracy improvement of 7.7 % against traditional regression LSTM model. Secondly, the introduction of the temperature forecast data from the previous one day can increase the forecast accuracy by about 18% points. When the earlier temperature forecast is used, the forecast accuracy will gradually decrease, and the use of the temperature forecast released 3 days before can hardly improve the forecast effect. In the end, using hourly temperature forecasts will result in better forecast accuracy than using daily temperature forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助TT采纳,获得10
刚刚
风卡发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
晨芒完成签到,获得积分10
2秒前
3秒前
你大夫哥完成签到,获得积分10
4秒前
Jasmine关注了科研通微信公众号
4秒前
科研通AI2S应助aerjin采纳,获得10
5秒前
sidegate完成签到,获得积分10
5秒前
燕知南发布了新的文献求助10
5秒前
BinZ发布了新的文献求助30
6秒前
兔毛毛发布了新的文献求助10
7秒前
666完成签到,获得积分10
7秒前
星辰大海应助杨文志采纳,获得10
8秒前
李爱国应助cc采纳,获得10
8秒前
9秒前
Gxx完成签到,获得积分10
9秒前
9秒前
薰硝壤应助星川采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
大个应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得20
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905