FGFL: A blockchain-based fair incentive governor for Federated Learning

激励 计算机科学 声誉 订单(交换) 收入 块链 计算机安全 质量(理念) 调速器 众包 补偿(心理学) 过程(计算) 业务 微观经济学 万维网 法学 财务 物理 经济 哲学 操作系统 认识论 热力学 政治学 心理学 精神分析
作者
Liang Gao,Li Li,Yingwen Chen,Cheng‐Zhong Xu,Ming Xu
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:163: 283-299 被引量:29
标识
DOI:10.1016/j.jpdc.2022.01.019
摘要

Federated Learning is a framework that coordinates a large amount of workers to train a shared model in a distributed manner, in which the training data are located on the workers' sides in order to preserve data privacy. There are two challenges in the crowdsourcing of FL, the workers who participant in training need to consume computing and communication resources, so that they are reluctant to participate in the training process if they can not get reasonable rewards. Moreover, there may be attackers who send arbitrary updates to get undeserving compensation or even destroy the model, thus, effective prevention of malicious workers is also critical. An incentive mechanism is urgently required in order to encourage high-quality workers to participate in FL and to punish the attackers. In this paper, we propose FGFL, a blockchain-based incentive governor for Federated Learning. In FGFL, we assess the participants with reputation and contribution indicators. Then the task publisher rewards workers fairly to attract efficient ones while the malicious ones are punished and eliminated. In addition, we propose a blockchain-based incentive management system to manage the incentive mechanism. We evaluate the effectiveness and fairness of FGFL through theoretical analysis and comprehensive experiments. The evaluation results show that FGFL fairly rewards workers according to their corresponding behavior and quality. FGFL increases the system revenue by 0.2% to 3.4% in reliable federations compared with baselines. And in the unreliable scenario where contains attackers, the system revenue of FGFL outperforms the baselines by more than 46.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助专一的书雪采纳,获得10
1秒前
迷糊的小亮完成签到,获得积分10
1秒前
完美世界应助析界成微采纳,获得10
2秒前
ZYH完成签到,获得积分10
3秒前
3秒前
能干太清发布了新的文献求助10
4秒前
淡然的绮兰应助r_ringaaa采纳,获得10
6秒前
7秒前
9秒前
9秒前
冯11发布了新的文献求助10
11秒前
司徒天思发布了新的文献求助10
11秒前
秋夜白完成签到,获得积分10
12秒前
难过的小甜瓜完成签到,获得积分10
12秒前
镁铝发布了新的文献求助10
13秒前
14秒前
SJD完成签到,获得积分0
14秒前
hxb应助suhua采纳,获得10
15秒前
田様应助过时的起眸采纳,获得10
16秒前
16秒前
8848k纯帅完成签到,获得积分10
17秒前
hxb应助发生了什么树采纳,获得10
17秒前
18秒前
18秒前
19秒前
打打应助贝壳采纳,获得10
19秒前
累狗刘完成签到 ,获得积分10
19秒前
22秒前
22秒前
缓慢珠发布了新的文献求助10
22秒前
ly完成签到,获得积分10
23秒前
23秒前
荧荧荧发布了新的文献求助10
24秒前
小豆芽发布了新的文献求助10
25秒前
wqw发布了新的文献求助30
26秒前
镁铝完成签到,获得积分20
27秒前
27秒前
aaaaaa发布了新的文献求助10
28秒前
茹茹完成签到 ,获得积分10
28秒前
bobo发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187