A Robust Single-Particle Cryo-Electron Microscopy (cryo-EM) Processing Workflow with cryoSPARC, RELION, and Scipion

计算机科学 工作流程 软件 管道(软件) 低温电子显微 图像处理 人工智能 计算机视觉 数据挖掘 图像(数学) 数据库 物理 核磁共振 程序设计语言
作者
Megan C. DiIorio,Arkadiusz W. Kulczyk
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (179) 被引量:10
标识
DOI:10.3791/63387
摘要

Recent advances in both instrumentation and image processing software have made single-particle cryo-electron microscopy (cryo-EM) the preferred method for structural biologists to determine high-resolution structures of a wide variety of macromolecules. Multiple software suites are available to new and expert users for image processing and structure calculation, which streamline the same basic workflow: movies acquired by the microscope detectors undergo correction for beam-induced motion and contrast transfer function (CTF) estimation. Next, particle images are selected and extracted from averaged movie frames for iterative 2D and 3D classification, followed by 3D reconstruction, refinement, and validation. Because various software packages employ different algorithms and require varying levels of expertise to operate, the 3D maps they generate often differ in quality and resolution. Thus, users regularly transfer data between a variety of programs for optimal results. This paper provides a guide for users to navigate a workflow across the popular software packages: cryoSPARC v3, RELION-3, and Scipion 3 to obtain a near-atomic resolution structure of the adeno-associated virus (AAV). We first detail an image processing pipeline with cryoSPARC v3, as its efficient algorithms and easy-to-use GUI allow users to quickly arrive at a 3D map. In the next step, we use PyEM and in-house scripts to convert and transfer particle coordinates from the best quality 3D reconstruction obtained in cryoSPARC v3 to RELION-3 and Scipion 3 and recalculate 3D maps. Finally, we outline steps for further refinement and validation of the resultant structures by integrating algorithms from RELION-3 and Scipion 3. In this article, we describe how to effectively utilize three processing platforms to create a single and robust workflow applicable to a variety of data sets for high-resolution structure determination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢翠发布了新的文献求助10
1秒前
yxf完成签到,获得积分10
1秒前
2秒前
赵西里完成签到,获得积分10
2秒前
深情安青应助芋泥夹心采纳,获得10
3秒前
3秒前
4秒前
浮游应助Kate采纳,获得10
5秒前
6秒前
傻妞发布了新的文献求助10
7秒前
十一关注了科研通微信公众号
7秒前
8秒前
8秒前
kfoeihf发布了新的文献求助30
9秒前
9秒前
Herrr发布了新的文献求助10
10秒前
福路发布了新的文献求助10
10秒前
10秒前
10秒前
嗯嗯发布了新的文献求助10
10秒前
12秒前
西门子云发布了新的文献求助10
13秒前
漫若浮光发布了新的文献求助10
13秒前
魏魏完成签到,获得积分10
14秒前
科研通AI5应助嗯嗯采纳,获得10
16秒前
初一的月亮完成签到,获得积分10
16秒前
完美世界应助jojo采纳,获得10
17秒前
Hashou发布了新的文献求助10
17秒前
自由中心完成签到 ,获得积分10
18秒前
小马甲应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
陈佳丽应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783