模式识别(心理学)
多元微积分
回转窑
特征(语言学)
人工智能
计算机科学
核(代数)
系列(地层学)
时间序列
特征提取
数据挖掘
窑
多元统计
机器学习
数学
工程类
控制工程
古生物学
语言学
哲学
组合数学
生物
废物管理
作者
Dingxiang Wang,Xiaogang Zhang,Hua Chen,Leyuan Wu,Yu Jiang,Mingyang Lv
标识
DOI:10.1109/cac53003.2021.9727533
摘要
The classification of long-tailed multivariate time series data (LTMTS) is a common realistic challenge in pattern recognition tasks. LTMTS usually leads to poor feature separability and low tail pattern recognition accuracy. In this paper, a feature learning model with the goal of improving feature separability and a novel classification model based on dynamic kernel modification strategy are proposed for LTMTS classification. The sintering condition recognition experiment of rotary kiln using real thermal data shows that the proposed methods can distinguish various conditions better and improve the recognition accuracy of tail conditions effectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI