Anti-HIV drug elvitegravir suppresses cancer metastasis via increased proteasomal degradation of m6A methyltransferase METTL3.

癌症研究 生物 转移 癌症 甲基转移酶
作者
Long Liao,Yan He,Shu Jun Li,Guo Geng Zhang,Wei Yu,Jing Yang,Zi-Jia Huang,Can-Can Zheng,Qing-Yu He,Yan Li,Bin Li
出处
期刊:Cancer Research [American Association for Cancer Research]
标识
DOI:10.1158/0008-5472.can-21-4124
摘要

N6-methyladenosine (m6A) methylation is an abundant modification in eukaryotic mRNAs. Accumulating evidence suggests a role for RNA m6A methylation in various aspects of cancer biology. In this study, we aimed to explore the biological role of RNA m6A modification in tumor metastasis and to identify novel therapeutic strategies for esophageal squamous cell carcinoma (ESCC). Integration of genome-wide CRISPR/Cas9 functional screening with highly invasive and metastatic ESCC subline models led to the identification of METTL3, the catalytic subunit of the N6-adenosine-methyltransferase complex, as a promoter of cancer metastasis. METTL3 expression was upregulated in ESCC tumors and metastatic tissues. In vitro and in vivo experiments indicated that METTL3 increased m6A in EGR1 mRNA and enhanced its stability in a YTHDF3-dependent manner, activating EGR1/Snail signaling. Investigation into regulation of METTL3 expression found that KAT2A increased H3K27 acetylation levels in the METTL3 promoter region and activated transcription of METTL3 while SIRT2 exerted the opposite effects. Molecular docking and computational screening in a Food and Drug Administration (FDA)-approved compound library consisting of 1,443 small molecules identified compounds targeting METTL3 to suppress cancer metastasis. Elvitegravir, originally developed to treat human immunodeficiency virus (HIV) infection, suppressed metastasis by directly targeting METTL3 and enhancing its STUB1-mediated proteasomal degradation. Overall, RNA m6A modifications are important in cancer metastasis, and targeting METTL3 with elvitegravir has therapeutic potential for treating ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小王琢完成签到,获得积分10
1秒前
1秒前
龙玄泽应助ZWP采纳,获得10
2秒前
蓝色的帐篷完成签到 ,获得积分10
2秒前
venger完成签到,获得积分10
2秒前
2秒前
Ava应助孙总采纳,获得10
3秒前
3秒前
4秒前
4秒前
FG完成签到,获得积分10
4秒前
dildil发布了新的文献求助10
4秒前
安详的煎蛋完成签到,获得积分10
4秒前
冷酷新柔完成签到,获得积分10
4秒前
yangjoy完成签到 ,获得积分10
4秒前
畅快菠萝完成签到,获得积分10
5秒前
一一发布了新的文献求助10
5秒前
非盈完成签到,获得积分20
5秒前
大模型应助mmd采纳,获得10
5秒前
6秒前
6秒前
VDC应助Spring采纳,获得30
6秒前
6秒前
大模型应助jjl采纳,获得10
6秒前
cyndi应助微凉采纳,获得20
6秒前
小王琢发布了新的文献求助10
7秒前
科研通AI5应助123采纳,获得10
7秒前
葡萄糖完成签到,获得积分10
7秒前
赫连烙发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
7秒前
超帅的怡发布了新的文献求助10
7秒前
ACC完成签到,获得积分10
8秒前
小刘完成签到,获得积分10
8秒前
zxc发布了新的文献求助10
8秒前
畅快菠萝发布了新的文献求助10
8秒前
GAOBIN000发布了新的文献求助10
8秒前
CHENGJIE发布了新的文献求助10
9秒前
烂漫的松完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556982
求助须知:如何正确求助?哪些是违规求助? 3132339
关于积分的说明 9396775
捐赠科研通 2832471
什么是DOI,文献DOI怎么找? 1556813
邀请新用户注册赠送积分活动 726934
科研通“疑难数据库(出版商)”最低求助积分说明 716151