Expansion Microscopy for Imaging the Cell–Material Interface

材料科学 显微镜 纳米地形 骨整合 纳米技术 生物医学工程 纳米尺度 分辨率(逻辑) 光学 计算机科学 植入 物理 人工智能 冶金 外科 医学
作者
Melissa L. Nakamoto,Csaba Forró,Wei Zhang,Ching-Ting Tsai,Bianxiao Cui
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (5): 7559-7571 被引量:14
标识
DOI:10.1021/acsnano.1c11015
摘要

Surface topography on the scale of tens of nanometers to several micrometers substantially affects cell adhesion, migration, and differentiation. Recent studies using electron microscopy and super-resolution microscopy provide insight into how cells interact with surface nanotopography; however, the complex sample preparation and expensive imaging equipment required for these methods makes them not easily accessible. Expansion microscopy (ExM) is an affordable approach to image beyond the diffraction limit, but ExM cannot be readily applied to image the cell-material interface as most materials do not expand. Here, we develop a protocol that allows the use of ExM to resolve the cell-material interface with high resolution. We apply the technique to image the interface between U2OS cells and nanostructured substrates as well as the interface between primary osteoblasts with titanium dental implants. The high spatial resolution enabled by ExM reveals that although AP2 and F-actin both accumulate at curved membranes induced by vertical nanostructures, they are spatially segregated. Using ExM, we also reliably image how osteoblasts interact with roughened titanium implant surfaces below the diffraction limit; this is of great interest to understand osseointegration of the implants but has up to now been a significant technical challenge due to the irregular shape, the large volume, and the opacity of the titanium implants that have rendered them incompatible with other super-resolution techniques. We believe that our protocol will enable the use of ExM as a powerful tool for cell-material interface studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天你读文献了吗完成签到,获得积分10
刚刚
CYKM完成签到,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
赵欣阳发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得30
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助任性的蝴蝶采纳,获得10
2秒前
2秒前
lxy发布了新的文献求助10
3秒前
此然发布了新的文献求助10
5秒前
hd发布了新的文献求助10
5秒前
5秒前
6秒前
野性的炳发布了新的文献求助10
7秒前
李爱国应助米莉森的锋刃采纳,获得10
8秒前
小二郎应助那奇泡芙采纳,获得10
9秒前
Anquan发布了新的文献求助10
9秒前
ACMI完成签到 ,获得积分10
9秒前
12秒前
Yuhong完成签到,获得积分10
12秒前
14秒前
JamesPei应助Vincy采纳,获得10
15秒前
15秒前
我是老大应助¥#¥-11采纳,获得10
17秒前
拼搏书发布了新的文献求助10
18秒前
19秒前
李健应助Red采纳,获得10
19秒前
快乐科研发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352