Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
很勇敢yu发布了新的文献求助10
刚刚
ts完成签到,获得积分10
刚刚
科目三应助尊敬吐司采纳,获得10
刚刚
1秒前
1秒前
2秒前
2秒前
小崽总完成签到,获得积分10
2秒前
CHOSENONE发布了新的文献求助10
2秒前
Nyxia发布了新的文献求助10
3秒前
务实思烟完成签到,获得积分10
4秒前
Leavome发布了新的文献求助10
4秒前
小二郎应助要减肥南霜采纳,获得10
5秒前
小青椒应助幽壑之潜蛟采纳,获得30
6秒前
在水一方应助自然的小宋采纳,获得10
6秒前
奋斗瑶发布了新的文献求助10
6秒前
6秒前
yuanhz发布了新的文献求助10
7秒前
余春完成签到,获得积分10
7秒前
jinlong完成签到,获得积分10
7秒前
陆一发布了新的文献求助10
7秒前
8秒前
爆米花应助很勇敢yu采纳,获得10
8秒前
Aulalala完成签到,获得积分10
8秒前
裴泡泡完成签到 ,获得积分20
8秒前
9秒前
9秒前
10秒前
11秒前
11秒前
完美世界应助沉静的寄容采纳,获得10
11秒前
明亮寒安完成签到 ,获得积分10
12秒前
13秒前
13秒前
欣喜亚男发布了新的文献求助10
13秒前
栗悟饭与龟波功关注了科研通微信公众号
13秒前
啦啦康发布了新的文献求助10
14秒前
14秒前
小蘑菇应助余春采纳,获得10
15秒前
香蕉觅云应助守护采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959834
求助须知:如何正确求助?哪些是违规求助? 4220417
关于积分的说明 13142469
捐赠科研通 4004181
什么是DOI,文献DOI怎么找? 2191268
邀请新用户注册赠送积分活动 1205625
关于科研通互助平台的介绍 1116888