亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
和谐蛋蛋完成签到,获得积分10
12秒前
14秒前
齐多达完成签到 ,获得积分10
24秒前
33秒前
34秒前
宅宅完成签到 ,获得积分10
35秒前
35秒前
别熬夜发布了新的文献求助10
37秒前
山野完成签到 ,获得积分10
39秒前
科研通AI5应助平淡的语蓉采纳,获得30
41秒前
Shawn发布了新的文献求助10
41秒前
Ava应助veggieg采纳,获得10
42秒前
大个应助veggieg采纳,获得10
42秒前
传奇3应助veggieg采纳,获得10
42秒前
xun应助veggieg采纳,获得50
42秒前
在水一方应助veggieg采纳,获得10
42秒前
xun应助veggieg采纳,获得50
42秒前
49秒前
别熬夜完成签到 ,获得积分10
50秒前
水菜泽子发布了新的文献求助50
52秒前
55秒前
545950563完成签到 ,获得积分10
57秒前
星辰大海应助Shawn采纳,获得10
1分钟前
1分钟前
Zosia完成签到,获得积分10
1分钟前
平淡的语蓉完成签到,获得积分20
1分钟前
1分钟前
学术妲己发布了新的文献求助10
1分钟前
1分钟前
橘子海完成签到,获得积分10
1分钟前
巴拉巴拉完成签到,获得积分10
1分钟前
彭于晏应助伯云采纳,获得10
1分钟前
李金文应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
李金文应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
学术妲己完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610666
求助须知:如何正确求助?哪些是违规求助? 4016498
关于积分的说明 12435370
捐赠科研通 3698166
什么是DOI,文献DOI怎么找? 2039273
邀请新用户注册赠送积分活动 1072120
科研通“疑难数据库(出版商)”最低求助积分说明 955796