Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助林白同学采纳,获得10
1秒前
琦铉完成签到,获得积分10
1秒前
shi0331完成签到,获得积分10
1秒前
咪咪完成签到,获得积分10
2秒前
畅快雁山完成签到,获得积分10
2秒前
2秒前
2秒前
fhl完成签到,获得积分10
3秒前
HC完成签到,获得积分10
3秒前
华仔应助狄枫采纳,获得10
4秒前
4秒前
爱笑易云发布了新的文献求助10
5秒前
怡然的灯泡完成签到 ,获得积分10
5秒前
Legendary完成签到,获得积分20
7秒前
e40076km完成签到,获得积分10
7秒前
叶光大完成签到 ,获得积分10
7秒前
领导范儿应助111采纳,获得10
7秒前
Stella应助单纯的思松采纳,获得30
8秒前
燕燕于飞完成签到,获得积分10
8秒前
li完成签到,获得积分20
8秒前
南巷酒肆完成签到,获得积分10
8秒前
从容羽毛给从容羽毛的求助进行了留言
8秒前
怕黑的契发布了新的文献求助10
9秒前
故事完成签到,获得积分10
9秒前
水博士完成签到,获得积分10
9秒前
zqdfj完成签到,获得积分20
9秒前
大个应助全随阴采纳,获得30
10秒前
遮宁发布了新的文献求助10
10秒前
隐形曼青应助千千晚星采纳,获得10
10秒前
红绿蓝完成签到 ,获得积分10
10秒前
songsongsong完成签到,获得积分10
10秒前
Legendary发布了新的文献求助30
10秒前
润恩完成签到,获得积分10
10秒前
王世卉完成签到,获得积分10
10秒前
10秒前
英姑应助tdtk采纳,获得10
10秒前
amberzyc应助小李爱查文献采纳,获得10
11秒前
虚幻靖易完成签到,获得积分10
11秒前
xie完成签到,获得积分10
11秒前
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337132
求助须知:如何正确求助?哪些是违规求助? 4474409
关于积分的说明 13924084
捐赠科研通 4369249
什么是DOI,文献DOI怎么找? 2400706
邀请新用户注册赠送积分活动 1393793
关于科研通互助平台的介绍 1365629