Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Gun采纳,获得10
刚刚
兰真纯洁发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
萧瑟完成签到,获得积分10
4秒前
4秒前
科研通AI6应助唯有采纳,获得10
5秒前
5秒前
changping应助彳亍采纳,获得10
5秒前
6秒前
6秒前
zcq发布了新的文献求助10
6秒前
juwairen119完成签到,获得积分10
6秒前
田様应助Hanyi采纳,获得10
6秒前
6秒前
星辰大海应助帅气的plum采纳,获得10
6秒前
上官若男应助mahuahua采纳,获得10
7秒前
7秒前
7秒前
xh完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
fantexi113发布了新的文献求助10
9秒前
木易发布了新的文献求助10
9秒前
9秒前
杨天水发布了新的文献求助10
10秒前
瞿霞发布了新的文献求助20
10秒前
Orange应助李兴邦采纳,获得30
11秒前
Llong发布了新的文献求助10
11秒前
张宁波发布了新的文献求助10
12秒前
sxq发布了新的文献求助10
12秒前
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205985
求助须知:如何正确求助?哪些是违规求助? 4384621
关于积分的说明 13653797
捐赠科研通 4242847
什么是DOI,文献DOI怎么找? 2327751
邀请新用户注册赠送积分活动 1325466
关于科研通互助平台的介绍 1277574