Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯幼萱完成签到,获得积分10
刚刚
英俊的铭应助健壮冰淇淋采纳,获得10
1秒前
夜晚有星完成签到,获得积分20
1秒前
2秒前
zdq10068发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
嘉深完成签到,获得积分10
3秒前
科目三应助小汤圆采纳,获得10
3秒前
3秒前
坚强香旋完成签到,获得积分10
3秒前
魁梧的马里奥完成签到,获得积分10
5秒前
5秒前
隐形小湫发布了新的文献求助10
5秒前
星辰大海应助周周不喝粥采纳,获得10
5秒前
科目三应助李奚采纳,获得20
5秒前
6秒前
乐观的傲云完成签到,获得积分10
6秒前
6秒前
6秒前
无语发布了新的文献求助10
7秒前
lwh发布了新的文献求助10
7秒前
飘逸剑发布了新的文献求助10
8秒前
8秒前
丘比特应助飘逸的傲霜采纳,获得10
8秒前
8秒前
8秒前
坚强香旋发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
趣味生煎发布了新的文献求助10
10秒前
12366完成签到,获得积分10
11秒前
11秒前
12秒前
黑大帅发布了新的文献求助10
12秒前
阿静发布了新的文献求助10
13秒前
一碗鱼发布了新的文献求助10
13秒前
zdq10068完成签到,获得积分10
13秒前
不配.应助Kitty采纳,获得50
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481218
求助须知:如何正确求助?哪些是违规求助? 4582199
关于积分的说明 14384156
捐赠科研通 4510881
什么是DOI,文献DOI怎么找? 2472055
邀请新用户注册赠送积分活动 1458443
关于科研通互助平台的介绍 1432034