Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨芯完成签到,获得积分20
1秒前
阿伟爱打球完成签到,获得积分10
1秒前
林上草应助潦草采纳,获得10
2秒前
2秒前
ding应助星星采纳,获得10
2秒前
摆烂王子发布了新的文献求助10
2秒前
小文完成签到,获得积分20
2秒前
Yimi完成签到,获得积分10
3秒前
小巧凝丹完成签到,获得积分10
3秒前
3秒前
4秒前
善良过客完成签到,获得积分10
4秒前
贪玩的宛凝完成签到,获得积分10
4秒前
5秒前
6秒前
倔强的大萝卜完成签到,获得积分0
6秒前
7秒前
7秒前
7秒前
8秒前
Ankangg完成签到,获得积分10
8秒前
啊啊啊完成签到 ,获得积分10
8秒前
aaaabc发布了新的文献求助20
8秒前
摆烂王子完成签到,获得积分10
9秒前
小离完成签到,获得积分10
9秒前
大个应助哲999采纳,获得10
10秒前
萌道发布了新的文献求助10
10秒前
10秒前
10秒前
yrea完成签到,获得积分10
10秒前
11秒前
JamesPei应助白华苍松采纳,获得10
12秒前
wangn发布了新的文献求助10
12秒前
挽歌发布了新的文献求助10
12秒前
12秒前
Zhang发布了新的文献求助10
12秒前
Owen应助jogrgr采纳,获得10
12秒前
wjw关闭了wjw文献求助
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759