Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yookia应助ZZ采纳,获得20
2秒前
wzj337完成签到 ,获得积分10
3秒前
4秒前
4秒前
柠檬发布了新的文献求助10
4秒前
Synan发布了新的文献求助10
5秒前
10秒前
ll发布了新的文献求助10
10秒前
冷傲以珊完成签到,获得积分10
10秒前
大白菜完成签到,获得积分10
11秒前
12秒前
水月完成签到,获得积分10
16秒前
囡囡吖完成签到,获得积分10
17秒前
甜橙汁发布了新的文献求助10
17秒前
21秒前
Feng5945完成签到 ,获得积分10
21秒前
lqm发布了新的文献求助10
21秒前
satchzhao发布了新的文献求助10
22秒前
传奇3应助川川子采纳,获得10
24秒前
斯文的傲珊完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助30
25秒前
Rondab应助俏皮火采纳,获得10
25秒前
猪猪hero发布了新的文献求助10
25秒前
summitekey完成签到 ,获得积分10
26秒前
逯十一完成签到 ,获得积分10
26秒前
徐徐完成签到,获得积分10
27秒前
Jacky完成签到,获得积分10
27秒前
27秒前
淡定初珍完成签到,获得积分10
27秒前
皇帝的床帘完成签到,获得积分10
29秒前
30秒前
30秒前
赘婿应助坚强的雯采纳,获得10
30秒前
月亮完成签到,获得积分10
32秒前
bkagyin应助小酥肉采纳,获得10
32秒前
碧蓝丹烟完成签到 ,获得积分10
34秒前
35秒前
Parotodus完成签到,获得积分10
36秒前
anyu完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689