亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibration of score based likelihood ratio estimation in automated forensic facial image comparison

计算机科学 校准 人工智能 水准点(测量) 特征(语言学) 软件 模式识别(心理学) 机器学习 数据挖掘 统计 数学 语言学 哲学 大地测量学 程序设计语言 地理
作者
Andrea Macarulla Rodríguez,Zeno Geradts,Marcel Worring
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:334: 111239-111239 被引量:7
标识
DOI:10.1016/j.forsciint.2022.111239
摘要

Forensic facial image comparison lacks a methodological standardization and empirical validation. We aim to address this problem by assessing the potential of machine learning to support the human expert in the courtroom. To yield valid evidence in court, decision making systems for facial image comparison should not only be accurate, they should also provide a calibrated confidence measure. This confidence is best conveyed using a score-based likelihood ratio. In this study we compare the performance of different calibrations for such scores. The score, either a distance or a similarity, is converted to a likelihood ratio using three types of calibration following similar techniques as applied in forensic fields such as speaker comparison and DNA matching, but which have not yet been tested in facial image comparison. The calibration types tested are: naive, quality score based on typicality, and feature-based. As transparency is essential in forensics, we focus on state-of-the-art open software and study their power compared to a state-of-the-art commercial system. With the European Network of Forensic Science Institutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score and feature based calibration outperform naive calibration. Overall, the commercial system outperforms open software when evaluating these Likelihood Ratios. In general, we conclude that calibration implemented before likelihood ratio estimation is recommended. Furthermore, in terms of performance the commercial system is preferred over open software. As open software is more transparent, more research on open software is urged for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
34秒前
41秒前
44秒前
komorebi发布了新的文献求助10
46秒前
丘比特应助komorebi采纳,获得10
53秒前
Kashing完成签到,获得积分10
58秒前
小燕子完成签到 ,获得积分10
1分钟前
叶也完成签到 ,获得积分10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
长情如音完成签到,获得积分10
1分钟前
1分钟前
六六完成签到 ,获得积分10
1分钟前
tree完成签到 ,获得积分10
1分钟前
子訡完成签到 ,获得积分10
2分钟前
坚强的纸飞机完成签到,获得积分10
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
浮游应助熊建采纳,获得10
2分钟前
2分钟前
浮游应助GGBoy采纳,获得10
2分钟前
善学以致用应助可爱丹彤采纳,获得10
2分钟前
悲凉的忆南完成签到,获得积分10
2分钟前
yxl完成签到,获得积分10
2分钟前
钟哈哈完成签到,获得积分10
2分钟前
可耐的盈完成签到,获得积分10
2分钟前
3分钟前
绿毛水怪完成签到,获得积分10
3分钟前
lsc完成签到,获得积分10
3分钟前
小fei完成签到,获得积分10
3分钟前
3分钟前
3分钟前
麻辣薯条完成签到,获得积分10
3分钟前
时尚身影完成签到,获得积分10
3分钟前
可爱丹彤发布了新的文献求助10
3分钟前
流苏完成签到,获得积分10
3分钟前
流苏2完成签到,获得积分10
3分钟前
岸在海的深处完成签到 ,获得积分10
3分钟前
俏皮凌蝶完成签到,获得积分10
3分钟前
3分钟前
Gabriel发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302321
求助须知:如何正确求助?哪些是违规求助? 4449504
关于积分的说明 13848409
捐赠科研通 4335689
什么是DOI,文献DOI怎么找? 2380484
邀请新用户注册赠送积分活动 1375488
关于科研通互助平台的介绍 1341703