生物
两栖动物
亚科
基因
遗传学
系统发育树
单核苷酸多态性
否定选择
Toll样受体
系统发育学
基因家族
适应(眼睛)
进化生物学
基因组
免疫系统
先天免疫系统
生态学
基因型
神经科学
作者
Lei Zhang,Guangshuai Liu,Tian Xia,Xiufeng Yang,Guolei Sun,Chao Zhao,Chunzhu Xu,Honghai Zhang
标识
DOI:10.1016/j.ijbiomac.2022.03.112
摘要
The evolutionary position and lifestyle of amphibians highlights the important roles of the immune system in adaptive radiation and their adaptation to a complex pathogenic environment. Toll-like receptors (TLRs) are membrane-like sensors that recognize and bind conserved molecular motifs in pathogens to initiate downstream immune responses. To understand the evolutionary patterns of TLRs in amphibians, we analyzed TLR genes from the genomes and transcriptomes of 102 amphibian species. Phylogenetic results showed that 578 intact amphibian TLR sequences belonged to 16 TLR genes and were divided into seven subfamilies. The TLR4 subfamily was only identified in the Anura. Purification selection plays a leading role in amphibian TLR evolution and mean ω (dN/dS) values ranged from 0.252 for TLR7 to 0.381 for TLR19. Furthermore, the ω values of different domains were significantly different. We found positive selection patterns for 141 of 12,690 codons (1.1%) in all amphibian TLRs, most of which were located in leucine-rich repeats (LRRs). We also observed low to moderate levels of single-nucleotide polymorphisms (SNPs) in Pelophylax nigromaculatus and Bombina orientalis. This study provided critical primers, meaningful information regarding TLR gene family evolution in amphibians, and insights into the complex evolutionary patterns and implications of TLR polymorphisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI