KLF2
造血
细胞生物学
生物
背主动脉
卵黄囊
内皮
内皮功能障碍
内皮干细胞
干细胞
免疫学
胚胎
遗传学
内分泌学
转录因子
基因
体外
作者
Yi-Qing Yang,Melanie Mumau,Joanna Tober,Qin Zhu,Laura Bennett,Courtney C. Hong,Derek C. Sung,Thomas Keller,Yasin Uzun,Yujie Feng,Swapnil V. Shewale,Mei Chen,Jisheng Yang,Xiaowen Chen,Steven Thomas,Kai Tan,Nancy A. Speck,Mark L. Kahn
出处
期刊:Blood
[American Society of Hematology]
日期:2022-05-12
卷期号:139 (19): 2942-2957
被引量:3
标识
DOI:10.1182/blood.2021013934
摘要
Abstract The hematopoietic stem cells (HSCs) that produce blood for the lifetime of an animal arise from RUNX1+ hemogenic endothelial cells (HECs) in the embryonic vasculature through a process of endothelial-to-hematopoietic transition (EHT). Studies have identified inflammatory mediators and fluid shear forces as critical environmental stimuli for EHT, raising the question of how such diverse inputs are integrated to drive HEC specification. Endothelial cell MEKK3-KLF2/4 signaling can be activated by both fluid shear forces and inflammatory mediators, and it plays roles in cardiovascular development and disease that have been linked to both stimuli. Here we demonstrate that MEKK3 and KLF2/4 are required in endothelial cells for the specification of RUNX1+ HECs in both the yolk sac and dorsal aorta of the mouse embryo and for their transition to intraaortic hematopoietic cluster (IAHC) cells. The inflammatory mediators lipopolysaccharide and interferon-γ increase RUNX1+ HECs in an MEKK3-dependent manner. Maternal administration of catecholamines that stimulate embryo cardiac function and accelerate yolk sac vascular remodeling increases EHT by wild-type but not MEKK3-deficient endothelium. These findings identify MEKK-KLF2/4 signaling as an essential pathway for EHT and provide a molecular basis for the integration of diverse environmental inputs, such as inflammatory mediators and hemodynamic forces, during definitive hematopoiesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI