Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning

苗木 人工智能 计算机科学 发芽 计算机视觉 农业工程 农学 工程类 生物
作者
Yongda Lin,Tingting Chen,Shiyuan Liu,Yulin Cai,Haowen Shi,Dike Zheng,Yubin Lan,Xuejun Yue,Lei Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:197: 106938-106938 被引量:51
标识
DOI:10.1016/j.compag.2022.106938
摘要

During the seedling stage, real-time monitoring and detection of seed germination are important for testing the quality of seeds, crop field management, and yield estimation. However, owing to the low efficiency of traditional manual seedling rate monitoring, survey methods have been gradually replaced by unmanned aerial vehicles (UAVs) and real-time peanut video counting models. In this study, we propose an efficient and fast real-time peanut video counting model (combining the improved YOLOV5s, DeepSort, and OpenCV programs) to accurately distinguish peanut seedlings from weeds, and to count peanut seedlings based on videos. The improved YOLOV5s combines a vision transformer with CSNet to replace the original CSNet backbone. The field experiment results show that the real-time peanut video counting model count capabilities is close to those of humans with an accuracy of 98.08%; however, the seedling calculation model takes only one-fifth of the time required for human detection. Therefore, the video-based model outperforms the image-based target detection algorithm, and was more suitable for application in practical germination rate investigation in peanut production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九日发布了新的文献求助10
2秒前
Orange应助proteinpurify采纳,获得10
2秒前
3秒前
3秒前
4秒前
nn发布了新的文献求助10
5秒前
5秒前
wenxiangou完成签到,获得积分20
5秒前
6秒前
情怀应助朱豪豪采纳,获得10
6秒前
7秒前
刘云发布了新的文献求助10
8秒前
大个应助乔治哇采纳,获得10
9秒前
哈哈哈完成签到 ,获得积分10
9秒前
10秒前
liu完成签到,获得积分20
10秒前
一脸茫然发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
13秒前
persist发布了新的文献求助10
14秒前
14秒前
16秒前
Orange应助123采纳,获得10
16秒前
16秒前
17秒前
朱豪豪发布了新的文献求助10
18秒前
上官若男应助宇彤采纳,获得10
19秒前
19秒前
19秒前
bingyu508完成签到,获得积分10
19秒前
sdf完成签到,获得积分10
19秒前
怕黑的海豚完成签到,获得积分20
20秒前
平常兰发布了新的文献求助30
20秒前
kk关闭了kk文献求助
21秒前
proteinpurify发布了新的文献求助10
21秒前
白张发布了新的文献求助10
21秒前
all4sci发布了新的文献求助10
21秒前
byb发布了新的文献求助20
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734857
求助须知:如何正确求助?哪些是违规求助? 3278790
关于积分的说明 10011741
捐赠科研通 2995468
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781216
科研通“疑难数据库(出版商)”最低求助积分说明 749300