Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring

计算机科学 混淆矩阵 强化学习 人工智能 功能(生物学) 机器学习 过程(计算) 生物 进化生物学 操作系统
作者
Yadong Wang,Yanlin Jia,Yuhang Tian,Jin Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:200: 117013-117013 被引量:43
标识
DOI:10.1016/j.eswa.2022.117013
摘要

Customer credit scoring is a dynamic interactive process. Simply designing the static reward function for deep reinforcement learning may be difficult to guide an agent to adapt to the change of the customer credit scoring environment. To solve this problem, we propose the deep Q-network with the confusion-matrix-based dynamic reward function (DQN-CMDRF) model. Especially, the new constructed dynamic reward function can adjust the reward dynamically according to the change of confusion matrix after each deep Q-network model training, which can guide the agent to adapt to the change of environment quickly, so as to improve the customer credit scoring performance of the deep Q-network model. First, we formulate customer credit scoring as a finite Markov decision process. Second, to adjust the reward dynamically according to the customer credit scoring environment, the dynamic reward function is designed based on the confusion matrix. Finally, we introduce the confusion-matrix-based dynamic reward function into the deep Q-network model for customer credit scoring. To verify the effectiveness of the proposed model, we introduce four evaluation measures and make a series of experiments on the five customer credit scoring datasets. The experimental results show that the constructed dynamic reward function can more effectively improve customer credit scoring performance of the deep Q-network model, and the performance of the DQN-CMDRF model is significantly better than that of the other eight traditional classification models. More importantly, we find that the constructed dynamic reward function can accelerate the convergence speed and improve the stability of the deep Q-network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
离离原上草完成签到,获得积分20
刚刚
1秒前
sy完成签到,获得积分20
1秒前
1秒前
心灵美的哈密瓜完成签到,获得积分10
1秒前
红日未央完成签到,获得积分10
2秒前
3秒前
3秒前
gss完成签到,获得积分10
4秒前
科研通AI5应助Annie采纳,获得10
6秒前
星辰大海应助sy采纳,获得10
7秒前
8秒前
8秒前
Jasper应助Zhongxiang Peng采纳,获得10
8秒前
9秒前
研友_VZG7GZ应助博修采纳,获得10
10秒前
LuckyJ_Jia应助科研通管家采纳,获得50
10秒前
LuckyJ_Jia应助科研通管家采纳,获得50
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
经络应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
淡然冬灵应助科研通管家采纳,获得20
11秒前
浮游应助科研通管家采纳,获得30
11秒前
文艺紫菜应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得30
12秒前
wanci应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得30
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783