Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring

计算机科学 混淆矩阵 强化学习 人工智能 功能(生物学) 机器学习 过程(计算) 生物 进化生物学 操作系统
作者
Yadong Wang,Yanlin Jia,Yuhang Tian,Jin Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 117013-117013 被引量:43
标识
DOI:10.1016/j.eswa.2022.117013
摘要

Customer credit scoring is a dynamic interactive process. Simply designing the static reward function for deep reinforcement learning may be difficult to guide an agent to adapt to the change of the customer credit scoring environment. To solve this problem, we propose the deep Q-network with the confusion-matrix-based dynamic reward function (DQN-CMDRF) model. Especially, the new constructed dynamic reward function can adjust the reward dynamically according to the change of confusion matrix after each deep Q-network model training, which can guide the agent to adapt to the change of environment quickly, so as to improve the customer credit scoring performance of the deep Q-network model. First, we formulate customer credit scoring as a finite Markov decision process. Second, to adjust the reward dynamically according to the customer credit scoring environment, the dynamic reward function is designed based on the confusion matrix. Finally, we introduce the confusion-matrix-based dynamic reward function into the deep Q-network model for customer credit scoring. To verify the effectiveness of the proposed model, we introduce four evaluation measures and make a series of experiments on the five customer credit scoring datasets. The experimental results show that the constructed dynamic reward function can more effectively improve customer credit scoring performance of the deep Q-network model, and the performance of the DQN-CMDRF model is significantly better than that of the other eight traditional classification models. More importantly, we find that the constructed dynamic reward function can accelerate the convergence speed and improve the stability of the deep Q-network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅寻双完成签到,获得积分10
2秒前
无限芝麻发布了新的文献求助10
2秒前
啊杨丶发布了新的文献求助10
2秒前
烟花应助屿航采纳,获得20
3秒前
vanshaw.vs发布了新的文献求助10
4秒前
CipherSage应助mslg33采纳,获得10
5秒前
Joan发布了新的文献求助10
5秒前
6秒前
7秒前
竹筏过海应助超帅寻双采纳,获得30
7秒前
木皆完成签到,获得积分10
8秒前
Jasper应助闪耀的启明星采纳,获得10
9秒前
啊杨丶完成签到,获得积分10
10秒前
qq发布了新的文献求助10
10秒前
11秒前
tong完成签到,获得积分10
12秒前
占稚晴发布了新的文献求助10
13秒前
orixero应助JimmyY采纳,获得10
14秒前
14秒前
jevon应助whl采纳,获得10
14秒前
香蕉觅云应助1234采纳,获得10
15秒前
www发布了新的文献求助10
16秒前
18秒前
jerry完成签到,获得积分10
19秒前
顺利发布了新的文献求助10
19秒前
20秒前
香蕉觅云应助Cheetahhh采纳,获得10
20秒前
hh完成签到,获得积分10
22秒前
22秒前
Jason.Z完成签到,获得积分10
26秒前
东十八发布了新的文献求助10
27秒前
朴素的无招完成签到 ,获得积分10
28秒前
30秒前
tong发布了新的文献求助10
30秒前
31秒前
英俊的铭应助帅气的Q采纳,获得30
33秒前
肖123发布了新的文献求助10
34秒前
34秒前
36秒前
37秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207426
求助须知:如何正确求助?哪些是违规求助? 2856733
关于积分的说明 8106829
捐赠科研通 2521947
什么是DOI,文献DOI怎么找? 1355294
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478