Deep reinforcement learning with the confusion-matrix-based dynamic reward function for customer credit scoring

计算机科学 混淆矩阵 强化学习 人工智能 功能(生物学) 机器学习 过程(计算) 进化生物学 生物 操作系统
作者
Yadong Wang,Yanlin Jia,Yuhang Tian,Jin Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:200: 117013-117013 被引量:43
标识
DOI:10.1016/j.eswa.2022.117013
摘要

Customer credit scoring is a dynamic interactive process. Simply designing the static reward function for deep reinforcement learning may be difficult to guide an agent to adapt to the change of the customer credit scoring environment. To solve this problem, we propose the deep Q-network with the confusion-matrix-based dynamic reward function (DQN-CMDRF) model. Especially, the new constructed dynamic reward function can adjust the reward dynamically according to the change of confusion matrix after each deep Q-network model training, which can guide the agent to adapt to the change of environment quickly, so as to improve the customer credit scoring performance of the deep Q-network model. First, we formulate customer credit scoring as a finite Markov decision process. Second, to adjust the reward dynamically according to the customer credit scoring environment, the dynamic reward function is designed based on the confusion matrix. Finally, we introduce the confusion-matrix-based dynamic reward function into the deep Q-network model for customer credit scoring. To verify the effectiveness of the proposed model, we introduce four evaluation measures and make a series of experiments on the five customer credit scoring datasets. The experimental results show that the constructed dynamic reward function can more effectively improve customer credit scoring performance of the deep Q-network model, and the performance of the DQN-CMDRF model is significantly better than that of the other eight traditional classification models. More importantly, we find that the constructed dynamic reward function can accelerate the convergence speed and improve the stability of the deep Q-network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑恒松发布了新的文献求助10
1秒前
1秒前
liumuyang0203发布了新的文献求助10
3秒前
fzzf发布了新的文献求助10
4秒前
司空豁发布了新的文献求助20
5秒前
5秒前
啊啊完成签到,获得积分20
5秒前
潇洒的如松完成签到,获得积分10
6秒前
顾矜应助威武的碧凡采纳,获得10
6秒前
yyds发布了新的文献求助10
7秒前
顾矜应助覃雅丽采纳,获得10
9秒前
赘婿应助GCY采纳,获得10
10秒前
11秒前
yantianliang发布了新的文献求助10
12秒前
cc发布了新的文献求助20
12秒前
zhangzhuoying5完成签到,获得积分10
12秒前
乐观小之应助迅速若魔采纳,获得10
13秒前
17秒前
18秒前
19秒前
19秒前
郑恒松完成签到,获得积分10
20秒前
22秒前
传奇3应助张汉超采纳,获得10
23秒前
Linghu完成签到,获得积分10
24秒前
24秒前
25秒前
共享精神应助1234采纳,获得10
25秒前
RCJ完成签到,获得积分10
26秒前
jjj应助chen采纳,获得20
26秒前
万能图书馆应助跳跃凡桃采纳,获得10
27秒前
亢kxh完成签到,获得积分10
28秒前
Kirin发布了新的文献求助10
28秒前
29秒前
orixero应助熬夜拜拜采纳,获得10
29秒前
GCY发布了新的文献求助10
29秒前
aaaa发布了新的文献求助10
30秒前
SYLH应助大反应釜采纳,获得10
31秒前
魔幻蓉发布了新的文献求助10
32秒前
SYLH应助啵啵采纳,获得10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086