A systematic review on affective computing: emotion models, databases, and recent advances

情感计算 计算机科学 手势 水准点(测量) 情感(语言学) 情绪识别 情绪分析 领域(数学分析) 面部表情 数据库 人工智能 人机交互 心理学 沟通 大地测量学 地理 数学分析 数学
作者
Yan Wang,Wei Song,Wei Tao,Antonio Liotta,Dawei Yang,Xinlei Li,Shuyong Gao,Yixuan Sun,Weifeng Ge,Wei Zhang,Wenqiang Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:83-84: 19-52 被引量:187
标识
DOI:10.1016/j.inffus.2022.03.009
摘要

Affective computing conjoins the research topics of emotion recognition and sentiment analysis, and can be realized with unimodal or multimodal data, consisting primarily of physical information (e.g., text, audio, and visual) and physiological signals (e.g., EEG and ECG). Physical-based affect recognition caters to more researchers due to the availability of multiple public databases, but it is challenging to reveal one's inner emotion hidden purposefully from facial expressions, audio tones, body gestures, etc. Physiological signals can generate more precise and reliable emotional results; yet, the difficulty in acquiring these signals hinders their practical application. Besides, by fusing physical information and physiological signals, useful features of emotional states can be obtained to enhance the performance of affective computing models. While existing reviews focus on one specific aspect of affective computing, we provide a systematical survey of important components: emotion models, databases, and recent advances. Firstly, we introduce two typical emotion models followed by five kinds of commonly used databases for affective computing. Next, we survey and taxonomize state-of-the-art unimodal affect recognition and multimodal affective analysis in terms of their detailed architectures and performances. Finally, we discuss some critical aspects of affective computing and its applications and conclude this review by pointing out some of the most promising future directions, such as the establishment of benchmark database and fusion strategies. The overarching goal of this systematic review is to help academic and industrial researchers understand the recent advances as well as new developments in this fast-paced, high-impact domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyu完成签到,获得积分10
刚刚
麻辣小龙虾完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
木可南完成签到,获得积分10
2秒前
酷波er应助zhuweihao采纳,获得10
4秒前
丘比特应助能干的小蘑菇采纳,获得10
5秒前
123cxj发布了新的文献求助10
5秒前
ww4566发布了新的文献求助10
6秒前
6秒前
直率闭月完成签到,获得积分10
6秒前
dou发布了新的文献求助10
8秒前
rockman发布了新的文献求助10
8秒前
10秒前
xiaozhou完成签到,获得积分10
11秒前
12秒前
ding应助李多鱼采纳,获得10
12秒前
13秒前
13秒前
橘朵方差发布了新的文献求助10
13秒前
ww4566完成签到,获得积分10
15秒前
15秒前
斯文败类应助Dphile采纳,获得10
16秒前
16秒前
18秒前
18秒前
bkagyin应助昭奚采纳,获得10
19秒前
wuhoo完成签到,获得积分10
19秒前
科研通AI2S应助完美的海秋采纳,获得10
20秒前
牛肉怪完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
23秒前
一只火鸡材料学者完成签到,获得积分10
23秒前
哈哈完成签到,获得积分10
23秒前
在水一方应助顺利张采纳,获得20
24秒前
酷波er应助舒服的茹嫣采纳,获得10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244153
求助须知:如何正确求助?哪些是违规求助? 2887922
关于积分的说明 8250452
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384663
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625984