A systematic review on affective computing: emotion models, databases, and recent advances

情感计算 计算机科学 手势 水准点(测量) 情感(语言学) 情绪识别 情绪分析 领域(数学分析) 面部表情 数据库 人工智能 人机交互 心理学 沟通 大地测量学 地理 数学分析 数学
作者
Yan Wang,Wei Song,Wei Tao,Antonio Liotta,Dawei Yang,Xinlei Li,Shuyong Gao,Yixuan Sun,Weifeng Ge,Wei Zhang,Wenqiang Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:83-84: 19-52 被引量:288
标识
DOI:10.1016/j.inffus.2022.03.009
摘要

Affective computing conjoins the research topics of emotion recognition and sentiment analysis, and can be realized with unimodal or multimodal data, consisting primarily of physical information (e.g., text, audio, and visual) and physiological signals (e.g., EEG and ECG). Physical-based affect recognition caters to more researchers due to the availability of multiple public databases, but it is challenging to reveal one's inner emotion hidden purposefully from facial expressions, audio tones, body gestures, etc. Physiological signals can generate more precise and reliable emotional results; yet, the difficulty in acquiring these signals hinders their practical application. Besides, by fusing physical information and physiological signals, useful features of emotional states can be obtained to enhance the performance of affective computing models. While existing reviews focus on one specific aspect of affective computing, we provide a systematical survey of important components: emotion models, databases, and recent advances. Firstly, we introduce two typical emotion models followed by five kinds of commonly used databases for affective computing. Next, we survey and taxonomize state-of-the-art unimodal affect recognition and multimodal affective analysis in terms of their detailed architectures and performances. Finally, we discuss some critical aspects of affective computing and its applications and conclude this review by pointing out some of the most promising future directions, such as the establishment of benchmark database and fusion strategies. The overarching goal of this systematic review is to help academic and industrial researchers understand the recent advances as well as new developments in this fast-paced, high-impact domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
给我好好读书完成签到,获得积分10
2秒前
优雅依玉发布了新的文献求助10
3秒前
3秒前
字符串完成签到,获得积分10
5秒前
Lucas应助qazwsxedc采纳,获得10
5秒前
6秒前
可耐的荠发布了新的文献求助30
6秒前
科研通AI2S应助KKIII采纳,获得10
6秒前
豆豆哥完成签到 ,获得积分10
7秒前
一般路过kamenride完成签到,获得积分10
7秒前
di发布了新的文献求助10
8秒前
共享精神应助杨枝甘露采纳,获得10
9秒前
夏山完成签到,获得积分10
9秒前
小二郎应助Qiuqiu采纳,获得10
10秒前
加百莉发布了新的文献求助10
11秒前
圆圆圆完成签到 ,获得积分10
14秒前
14秒前
Lucas应助知识探索家采纳,获得10
14秒前
15秒前
科研通AI5应助夏山采纳,获得10
15秒前
思源应助KKIII采纳,获得10
15秒前
赵梦娜发布了新的文献求助10
16秒前
18秒前
ly完成签到,获得积分10
20秒前
金海完成签到,获得积分10
20秒前
xiaofei发布了新的文献求助10
21秒前
笨笨芯发布了新的文献求助10
21秒前
科研通AI5应助Alma采纳,获得10
21秒前
23秒前
星辰大海应助哈哈哈哈采纳,获得10
23秒前
24秒前
赘婿应助honphyjiang采纳,获得10
26秒前
mahuahua完成签到,获得积分10
26秒前
ff发布了新的文献求助10
27秒前
29秒前
32秒前
33秒前
英姑应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672293
求助须知:如何正确求助?哪些是违规求助? 3228627
关于积分的说明 9781377
捐赠科研通 2939114
什么是DOI,文献DOI怎么找? 1610578
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174